
INFO20003 Database Systems 1

INFO20003 Database Systems

Tutorial 7

2021.04.19

 

Xiuge Chen

INFO20003 Database Systems © University of Melbourne 2

Agenda

1. Notice - 5min

2. Effect of index on selection operator - 10min

3. Matching index - 10min

4. Cost estimation for different joins - 30 min

INFO20003 Database Systems © University of Melbourne 3

Notice

1. Assignment 2 has released - LMS Assignments

2. due date: 6:00pm Friday 30 April

3. Tips:

• Follow the submission instruction and format

• Try SQL practice first - LMS Practice on your own / Lab

• Might involve some SQL functions not taught - Google

• Complex queries - break down into sub tasks - nest

• Always check solutions manually

INFO20003 Database Systems © University of Melbourne 4

Effect of index on selection operator

1. Consider a relation R (a,b,c,d,e) containing 5,000,000 records,

where each data page of the relation holds 10 records. R is

organized as a sorted file with secondary indexes. Assume that

R.a is a candidate key for R, with values lying in the range 0 to

4,999,999, and that R is stored in R.a order. For each of the

following relational algebra queries, state which of the following

three approaches is most likely to be the cheapest:

• Access the sorted file of R directly.
• Use a B+ tree index on attribute R.a.

• Use a hash index on attribute R.a.  

INFO20003 Database Systems © University of Melbourne 5

Effect of index on selection operator

a. 𝜎a < 50000 (R)

• Access the sorted file of R directly.
• Use a B+ tree index on attribute R.a.

• Use a hash index on attribute R.a.

INFO20003 Database Systems © University of Melbourne 6

Effect of index on selection operator

a. 𝜎a < 50000 (R)

• Access the sorted file of R directly.
• Use a B+ tree index on attribute R.a.

• Use a hash index on attribute R.a.

The sorted file over R is preferred in this case –

just start from the beginning producing results directly.

INFO20003 Database Systems © University of Melbourne 7

Effect of index on selection operator

b. 𝜎a = 50000 (R)

• Access the sorted file of R directly.
• Use a B+ tree index on attribute R.a.

• Use a hash index on attribute R.a.

INFO20003 Database Systems © University of Melbourne 8

Effect of index on selection operator

b. 𝜎a = 50000 (R)

• Access the sorted file of R directly.
• Use a B+ tree index on attribute R.a.

• Use a hash index on attribute R.a.

This is an equality query.

A hash index will be the most cost-effective option in this

case.

INFO20003 Database Systems © University of Melbourne 9

Effect of index on selection operator

c. 𝜎a>50000∧a<50010 (R)

• Access the sorted file of R directly.
• Use a B+ tree index on attribute R.a.

• Use a hash index on attribute R.a.

INFO20003 Database Systems © University of Melbourne 10

Effect of index on selection operator

c. 𝜎a>50000∧a<50010 (R)

• Access the sorted file of R directly.
• Use a B+ tree index on attribute R.a.

• Use a hash index on attribute R.a.

This is a range query which does not begin at the start of

the sorted file.

A B+ tree index should be the cheapest of all the options  

INFO20003 Database Systems © University of Melbourne 11

Any questions?

Effect of index on selection operator

INFO20003 Database Systems © University of Melbourne 12

Matching index

2. Matching index

 
Consider the following schema for the Sailors relation:

 
Sailors (sid INT, sname VARCHAR(50), rating INT, age DOUBLE)

  
For each of the following indexes, list whether the index
matches the given selection conditions and briefly explain
why.

INFO20003 Database Systems © University of Melbourne 13

Matching index

I. A B+ tree index on the search key (Sailors.sid)

a. 𝜎Sailors.sid < 50,000 (Sailors)

b. 𝜎Sailors.sid = 50,000 (Sailors)

Match, primary conjuncts are: Sailors.sid = 50,000

Match, primary conjuncts are: Sailors.sid < 50,000

INFO20003 Database Systems © University of Melbourne 14

Matching index

II. A hash index on the search key (Sailors.sid)

a. 𝜎Sailors.sid < 50,000 (Sailors)

b. 𝜎Sailors.sid = 50,000 (Sailors)

Match, primary conjuncts are: Sailors.sid = 50,000

No match, range queries cannot be applied to a hash index.

INFO20003 Database Systems © University of Melbourne 15

Matching index

III. A B+ tree index on the search key (Sailors.rating,
Sailors.age)

a. 𝜎Sailors.rating < 8 ∧ Sailors.age = 21 (Sailors)

b. 𝜎Sailors.rating = 8 (Sailors)

c. 𝜎Sailors.age = 21 (Sailors)

Match, primary conjuncts are: Sailors.rating = 8

Match, primary conjuncts are Sailors.rating < 8 and
Sailors.rating < 8 ∧ Sailors.age = 21

No match. The index on (Sailors.rating, Sailors.age) is
primarily sorted on Sailors.rating, so the entire relation
would need to be searched to find those sailors with a
particular Sailors.age value.  

INFO20003 Database Systems © University of Melbourne 16

Any questions?

Matching index

INFO20003 Database Systems © University of Melbourne 17

Cost estimation for different joins

Consider the join R ⨝R.a = S.b S, given the following information
about the relations to be joined:
 Relation R contains 10,000 tuples and has 10 tuples/page.  
 Relation S contains 2,000 tuples and also has 10 tuples/page.  
 Attribute b of relation S is the primary key for S.  
 Both relations are stored as simple heap files.  
 Neither relation has any indexes built on it.  
 52 buffer pages are available.

The cost metric is the number of page I/Os unless otherwise noted and
the cost of writing out the result should be uniformly ignored. 
Let M=10,000 / 10 = 1000 be the number of pages in R

N=2,000 / 10 = 200 bet he number of pages in S, and

B = 52 be the number of buffer pages available.

INFO20003 Database Systems © University of Melbourne 18

Cost estimation for different joins

a. What is the cost of joining R and S using the page-oriented
Simple Nested Loops algorithm? What is the minimum number
of buffer pages (in memory) required in order for this cost to
remain unchanged?

The basic idea of page-oriented nested loops join is:

1. do a page by page scan of the outer relation

2. for each outer page, do a page-by-page scan of the inner
relation.

The cost can be minimised by selecting the smaller relation as
the outer relation:

INFO20003 Database Systems © University of Melbourne 19

Cost estimation for different joins

a. What is the cost of joining R and S using the page-oriented
Simple Nested Loops algorithm? What is the minimum number
of buffer pages (in memory) required in order for this cost to
remain unchanged?

Total cost = (# of pages in outer) + (# of pages in outer × # of
pages in inner)

= N + (N × M)

= 200 + (200 × 1000)

= 200,200

total 3 buffer pages are required. (one input R, one input S, one
output)

INFO20003 Database Systems © University of Melbourne 20

Cost estimation for different joins

b. What is the cost of joining R and S using the Block Nested
Loops algorithm? What is the minimum number of buffer pages
required in order for this cost to remain unchanged?

In block nested loops join

1. the outer relation is read in blocks (groups of pages that will fit
into whatever buffer pages are available)

2.for each block, do a page-by-page scan of the inner relation.

The outer relation is scanned once, and the inner relation is
scanned only once for the outer block.

INFO20003 Database Systems © University of Melbourne 21

Cost estimation for different joins

b. What is the cost of joining R and S using the Block Nested
Loops algorithm? What is the minimum number of buffer pages
required in order for this cost to remain unchanged?

of blocks = ceil(#pages in outer / (B - 2)) = ceil(200 / 50) = 4 

Total cost = (# of pages in outer) + (# of blocks × # of pages in
inner)

= 200 + (4 × 1000)

= 4200

The minimum number of buffer pages is 52 (FULL) for this cost.

INFO20003 Database Systems © University of Melbourne 22

Cost estimation for different joins

c. What is the cost of joining R and S using the Sort-Merge Join
algorithm? Assume that the external merge sort process can be
completed in 2 passes.
external merge sort:

1. The initial sorting pass will split R into 20 runs of 50 buffer
pages. After that, these pages will be written to the disk.

2. These sorted pages will be read again to be compared across
runs and combine the results. The resulting sorted pages will be
written to disk.

3. Similarly, S will split into 4 runs of approximately 50 buffer
pages and follow the same process as R.

The general formula for external merge sort is 2N × # of passes. 

INFO20003 Database Systems © University of Melbourne 23

Cost estimation for different joins

c. What is the cost of joining R and S using the Sort-Merge Join
algorithm? Assume that the external merge sort process can be
completed in 2 passes.
Cost of sorting R = 2 × # of passes × # of pages of R

= 2 × 2 × 1000 = 4000
Cost of sorting S = 2 × 2 × 200 = 800  

Cost of merging R and S = # of pages read of R + # of pages read
of S

= 1000 + 200 = 1200
Total cost = Cost of sorting R + Cost of sorting S + Cost of
merging R and S

= 4000 + 800 + 1200 = 6000  

 

INFO20003 Database Systems © University of Melbourne 24

Cost estimation for different joins

d. What is the cost of joining R and S using the Hash Join
algorithm?

In hash join

1. each relation is partitioned

2. join is performed by “matching” elements from corresponding
partitions.

INFO20003 Database Systems © University of Melbourne 25

Cost estimation for different joins

d. What is the cost of joining R and S using the Hash Join
algorithm?

Total cost = 3(M + N)

= 3(1000 + 200)

= 3600  

INFO20003 Database Systems © University of Melbourne 26

Cost estimation for different joins

e. What would the lowest possible I/O cost be for joining R and S
using any join algorithm, and how much buffer space would be
needed to achieve this cost? Explain briefly.

Hint: each relation was read only once

1. storing the entire smaller relation in memory

2. reading in the larger relation page by page and for each tuple in the
larger relation we search the smaller relation (which exists entirely in
memory) for matching tuples.

Block nested loop Join!

Total cost = M + N = 1200

minimum number of buffer pages = min{M, N} + 1 + 1 = 202.

INFO20003 Database Systems © University of Melbourne 27

Any questions?

Cost estimation for different joins

