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Agenda

1. Review of normalization concepts - 15min 
2. Normalisation exercises - 35min
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Review of normalization concepts

1. Anomalies 

What are them?  

Why we need to identify and fix them?  

Types of Anomalies:

1. update anomaly 
2. deletion anomaly  
3. insertion anomaly 

Make database more efficient and less error-prone 
How: Normalization!

Something wrong with the existing database 
Like redundancy, error occurrence when manipulating data
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Review of normalization concepts

1. Anomalies Types:

Update anomaly: data inconsistency that results from data 
redundancy and partial update when one or more instances of 
duplicated data are updated but not all. 

Deletion anomaly: unintentional loss of certain attribute values 
due to the deletion of other data for other attributes. 
 
Insertion anomaly: the inability to add certain attributes to a 
database due to absence of other attributes.
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Review of normalization concepts

1. Anomalies Example:

Update anomaly: suppose the room Sidney Myer G09 has been 
improved, and there are now 30 seats. In this single entity, we will 
have to update all other rows where room = Sidney Myer G09.  
Deletion anomaly: If we remove COMP10001 from the above 
table, the details of room EDS 6 are also deleted.  
Insertion anomaly: a new room “NewAlice109” has been built 
but has not yet been timetabled for any course or members of 
staff. 
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Review of normalization concepts

2. Functional dependency: 

• Occurs when a subset of R’s attributes {A1, A2, ..., An} 

determine attributes {B1, B2, ..., Bn} 

• If two records have the same A1, A2, ..., An then they have 

the same B1, B2, ..., Bn. 

• A relation R satisfies a functional dependency (FD) if and 

only if the FD is true for every instance of R.  

• Written as: 
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Review of normalization concepts

3. Determinants: 

• Attributes that determine the value of other attributes are 

called determinants 

• Example:

birthdate and ssn are determinants, as birthdate determines age 
and ssn determines the rest of the attributes. 
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Review of normalization concepts

4. Key and non-key attributes: 

• A key is a set of attributes {A1, A2, ..., An} for a relation R 

• such that {A1, A2, ..., An} functionally determines all other 

attributes of R and no subset of {A1, A2, ..., An} functionally 

determines all other attributes of R. The key must be 

minimal.

Example: 
       Person (ssn, name, birthdate, address, age) 

       ssn is the minimal key of the Person relation 
       but {ssn, name} is not (it is a “super key”). 
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Review of normalization concepts

5. Partial functional dependency 

• Arises when one or more non-key attributes are functionally  

determined by a subset of the primary key.
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Review of normalization concepts

5. Partial functional dependency Examples: 

• R (A, B, C, D)  

• composite primary key: (A, D) 

• functional dependencies: A → B, D → C.  

• AD determines BC (AD → BC: AD can uniquely identify BC).  

• Functional dependencies like A → B and D → C are called 

partial functional dependencies. 

• Order (Order#, Item#, Desc, Qty) 

• Order# and Item# are the keys.  

• item description, Desc, can be determined by Item# alone 

(partial functional dependencies)
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Review of normalization concepts

6. Transitive functional dependency  

• A non-key attribute is determined by another non-key 

attribute (or by a subset of PK and non-key attributes), such 

a dependency is called a transitive functional dependency.



INFO20003 Database Systems © University of Melbourne 12

Review of normalization concepts

7. Armstrong’s Axioms 

• What is it used for? 

• Types: 

• Given a relation and a set of functional dependencies 

(FDs), we can discover new functional dependencies 

using some rules generally known as Armstrong’s 

Axioms.

• Reflexivity (also known as “trivial FDs”) 

• Augmentation 

• Transitivity
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Review of normalization concepts

7. Armstrong’s Axioms 

• Reflexivity 

• R ( {A1, A2, ..., An} and {B1, B2, ..., Bn} ), B is a subset of A 

• Example: Person (ssn, name, birthdate, address, age) 

ssn, name → name

• Augmentation 

• Consider another subset of attributes {C1, C2, ..., Cn} 

• Example: Person (ssn, name, birthdate, address, age)    

ssn, name, age → name, age
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Review of normalization concepts

7. Armstrong’s Axioms 

• Transitivity 

• Example: Person (ssn, name, birthdate, address, age) 

ssn → birthdate, birthdate → age ⟹ ssn → age



INFO20003 Database Systems © University of Melbourne 15

Review of normalization concepts

8. Normalization and normal forms 

• Normalization: a technique used to iteratively improve 

relations to remove undesired redundancy by 

decomposing relations and eliminating anomalies.  

• Process is iterative  

• Process can be performed in stages generally referred to as 

Normal Forms. 
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Review of normalization concepts

8. Normalization and normal forms 

• First Normal Form (1NF), the relation is analysed and all 

repeating groups are identified to be decomposed into new 

relations.  

• Second Normal Form (2NF), all the partial dependencies 

are resolved/removed.  

• Third Normal Form (3NF): all the transitive dependencies 

are removed.
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Any questions? 

Review of normalization concepts
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Normalisation exercises

1. Consider the relation Diagnosis with the schema Diagnosis (DoctorID, 
DocName, PatientID, DiagnosisClass) and the following functional 
dependencies:  
                   DoctorID → DocName 
                   DoctorID, PatientID → DiagnosisClass  
Consider the following instance of Diagnosis:  

Identify different anomalies that can arise from this schema using the above 
instance.  
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Normalisation exercises

Q1: What is the key for Diagnosis

(DoctorID, PatientID)  
 
since together they are sufficient to uniquely identify each record
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Normalisation exercises

Q2: Does Insertion anomaly exist? What is it? 

Yes.  
Example:  
Inserting data for a new doctor like DoctorID and DocName, we must 
insert data of at least one patient associated with the doctor.  

Inability to insert records of particular fields is insertion anomaly. 
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Normalisation exercises

Q3: Does Deletion anomaly exist? What is it? 

Yes.  
Example:  
Deleting patient’s data can result in the loss of doctor’s data as well 
resulting in deletion anomaly.  

If delete P888 data -> lose record for the doctor named Alicia
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Normalisation exercises

Q4: Does Update anomaly exist? What is it? 

Yes.  
Example:  
One doctor may be associated with more than one patient.  
An update anomaly may result if a doctor’s name is changed for only 
one patient.  

If fail to change the doctor’s name from “John” to “John Miller” for 
both two records -> update anomaly. 
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Normalisation exercises

2. Consider a relation R (A, B, C, D) with the following FDs: 

 
                       AB → C, AC → B, BC → A, B → D  

 
The possible candidate keys of R are AB, AC, and BC, since each of those 
combinations is sufficient to uniquely identify each record.  

Let’s consider AB for instance. From AB → C we see that AB uniquely 
identifies C, and since B alone uniquely identifies D, AB together have 
covered CD, i.e. the entire set of attributes.  

List all the functional dependencies that violate 3NF. If any, decompose R 
accordingly. After decomposition, check if the resulting relations are in 
3NF, if not decompose further. 
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Normalisation exercises

2. Consider a relation R (A, B, C, D) with the following FDs: 
                       AB → C, AC → B, BC → A, B → D  

Notice: To be in 3NF, a relation should be in 2NF and all the transitive 
functional dependencies should be removed 

Q1: Is This relation in 2NF?

       No.  
       partial functional dependency B → D 

Q2: How to decompose it?

Another relation 

R1 (A, B, C) and R2 (B, D) 
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Normalisation exercises

3. Consider the following relation StaffPropertyInspection:  

StaffPropertyInspection (propertyNo, pAddress, iDate, iTime, comments, 
staffNo, sName)  

The FDs stated below hold for this relation:  

    propertyNo, iDate → iTime, comments, staffNo, sName 

    propertyNo → pAddress 
    staffNo → sName  

From these FDs, it is safe to assume that propertyNo and iDate can serve as 
a primary key.  

Your task is to normalise this relation to 3NF. Remember in order to 
achieve 3NF, you first need to achieve 1NF and 2NF.



INFO20003 Database Systems © University of Melbourne 26

Normalisation exercises

3. Consider the following relation StaffPropertyInspection:  

StaffPropertyInspection (propertyNo, pAddress, iDate, iTime, comments, 
staffNo, sName)  

    propertyNo, iDate → iTime, comments, staffNo, sName 

    propertyNo → pAddress 
    staffNo → sName  

Q1: Is this relation in 1NF (repeating groups)?

       Yes 

Q2: Is this relation in 2NF (partial dependencies)?

       No 
       propertyNo → pAddress 
       Decompose it!
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Normalisation exercises

3. Consider the following relation StaffPropertyInspection:  

StaffPropertyInspection (propertyNo, pAddress, iDate, iTime, comments, 
staffNo, sName)  

    propertyNo, iDate → iTime, comments, staffNo, sName 

    propertyNo → pAddress 
    staffNo → sName  

A2: Decompose into 2 relations:

Q3: Is this relation in 3NF (transitive dependencies)?
       No 
       staffNo → sName 
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Normalisation exercises

3. Consider the following relation StaffPropertyInspection:  

StaffPropertyInspection (propertyNo, pAddress, iDate, iTime, comments, 
staffNo, sName)  

    propertyNo, iDate → iTime, comments, staffNo, sName 

    propertyNo → pAddress 
    staffNo → sName  

A3: Decompose into 3 relations:
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Any questions? 

Normalisation exercises


