
INFO20003 Database Systems 1

INFO20003 Database Systems

Tutorial 9
2021.05.03

Xiuge Chen

INFO20003 Database Systems © University of Melbourne 2

Agenda

1. Review of normalization concepts - 15min
2. Normalisation exercises - 35min

INFO20003 Database Systems © University of Melbourne 3

Review of normalization concepts

1. Anomalies

What are them?

Why we need to identify and fix them?

Types of Anomalies:

1. update anomaly
2. deletion anomaly
3. insertion anomaly

Make database more efficient and less error-prone
How: Normalization!

Something wrong with the existing database
Like redundancy, error occurrence when manipulating data

INFO20003 Database Systems © University of Melbourne 4

Review of normalization concepts

1. Anomalies Types:

Update anomaly: data inconsistency that results from data
redundancy and partial update when one or more instances of
duplicated data are updated but not all.

Deletion anomaly: unintentional loss of certain attribute values
due to the deletion of other data for other attributes.

Insertion anomaly: the inability to add certain attributes to a
database due to absence of other attributes.

INFO20003 Database Systems © University of Melbourne 5

Review of normalization concepts

1. Anomalies Example:

Update anomaly: suppose the room Sidney Myer G09 has been
improved, and there are now 30 seats. In this single entity, we will
have to update all other rows where room = Sidney Myer G09.
Deletion anomaly: If we remove COMP10001 from the above
table, the details of room EDS 6 are also deleted.
Insertion anomaly: a new room “NewAlice109” has been built
but has not yet been timetabled for any course or members of
staff.

INFO20003 Database Systems © University of Melbourne 6

Review of normalization concepts

2. Functional dependency:

• Occurs when a subset of R’s attributes {A1, A2, ..., An}

determine attributes {B1, B2, ..., Bn}

• If two records have the same A1, A2, ..., An then they have

the same B1, B2, ..., Bn.

• A relation R satisfies a functional dependency (FD) if and

only if the FD is true for every instance of R.

• Written as:

INFO20003 Database Systems © University of Melbourne 7

Review of normalization concepts

3. Determinants:

• Attributes that determine the value of other attributes are

called determinants

• Example:

birthdate and ssn are determinants, as birthdate determines age
and ssn determines the rest of the attributes.

INFO20003 Database Systems © University of Melbourne 8

Review of normalization concepts

4. Key and non-key attributes:

• A key is a set of attributes {A1, A2, ..., An} for a relation R

• such that {A1, A2, ..., An} functionally determines all other

attributes of R and no subset of {A1, A2, ..., An} functionally

determines all other attributes of R. The key must be

minimal.

Example:
 Person (ssn, name, birthdate, address, age)

 ssn is the minimal key of the Person relation
 but {ssn, name} is not (it is a “super key”).

INFO20003 Database Systems © University of Melbourne 9

Review of normalization concepts

5. Partial functional dependency

• Arises when one or more non-key attributes are functionally

determined by a subset of the primary key.

INFO20003 Database Systems © University of Melbourne 10

Review of normalization concepts

5. Partial functional dependency Examples:

• R (A, B, C, D)

• composite primary key: (A, D)

• functional dependencies: A → B, D → C.

• AD determines BC (AD → BC: AD can uniquely identify BC).

• Functional dependencies like A → B and D → C are called

partial functional dependencies.

• Order (Order#, Item#, Desc, Qty)

• Order# and Item# are the keys.

• item description, Desc, can be determined by Item# alone

(partial functional dependencies)

INFO20003 Database Systems © University of Melbourne 11

Review of normalization concepts

6. Transitive functional dependency

• A non-key attribute is determined by another non-key

attribute (or by a subset of PK and non-key attributes), such

a dependency is called a transitive functional dependency.

INFO20003 Database Systems © University of Melbourne 12

Review of normalization concepts

7. Armstrong’s Axioms

• What is it used for?

• Types:

• Given a relation and a set of functional dependencies

(FDs), we can discover new functional dependencies

using some rules generally known as Armstrong’s

Axioms.

• Reflexivity (also known as “trivial FDs”)

• Augmentation

• Transitivity

INFO20003 Database Systems © University of Melbourne 13

Review of normalization concepts

7. Armstrong’s Axioms

• Reflexivity

• R ({A1, A2, ..., An} and {B1, B2, ..., Bn}), B is a subset of A

• Example: Person (ssn, name, birthdate, address, age)

ssn, name → name

• Augmentation

• Consider another subset of attributes {C1, C2, ..., Cn}

• Example: Person (ssn, name, birthdate, address, age)

ssn, name, age → name, age

INFO20003 Database Systems © University of Melbourne 14

Review of normalization concepts

7. Armstrong’s Axioms

• Transitivity

• Example: Person (ssn, name, birthdate, address, age)

ssn → birthdate, birthdate → age ⟹ ssn → age

INFO20003 Database Systems © University of Melbourne 15

Review of normalization concepts

8. Normalization and normal forms

• Normalization: a technique used to iteratively improve

relations to remove undesired redundancy by

decomposing relations and eliminating anomalies.

• Process is iterative

• Process can be performed in stages generally referred to as

Normal Forms.

INFO20003 Database Systems © University of Melbourne 16

Review of normalization concepts

8. Normalization and normal forms

• First Normal Form (1NF), the relation is analysed and all

repeating groups are identified to be decomposed into new

relations.

• Second Normal Form (2NF), all the partial dependencies

are resolved/removed.

• Third Normal Form (3NF): all the transitive dependencies

are removed.

INFO20003 Database Systems © University of Melbourne 17

Any questions?

Review of normalization concepts

INFO20003 Database Systems © University of Melbourne 18

Normalisation exercises

1. Consider the relation Diagnosis with the schema Diagnosis (DoctorID,
DocName, PatientID, DiagnosisClass) and the following functional
dependencies:
 DoctorID → DocName
 DoctorID, PatientID → DiagnosisClass
Consider the following instance of Diagnosis:

Identify different anomalies that can arise from this schema using the above
instance.

INFO20003 Database Systems © University of Melbourne 19

Normalisation exercises

Q1: What is the key for Diagnosis

(DoctorID, PatientID)

since together they are sufficient to uniquely identify each record

INFO20003 Database Systems © University of Melbourne 20

Normalisation exercises

Q2: Does Insertion anomaly exist? What is it?

Yes.
Example:
Inserting data for a new doctor like DoctorID and DocName, we must
insert data of at least one patient associated with the doctor.

Inability to insert records of particular fields is insertion anomaly.

INFO20003 Database Systems © University of Melbourne 21

Normalisation exercises

Q3: Does Deletion anomaly exist? What is it?

Yes.
Example:
Deleting patient’s data can result in the loss of doctor’s data as well
resulting in deletion anomaly.

If delete P888 data -> lose record for the doctor named Alicia

INFO20003 Database Systems © University of Melbourne 22

Normalisation exercises

Q4: Does Update anomaly exist? What is it?

Yes.
Example:
One doctor may be associated with more than one patient.
An update anomaly may result if a doctor’s name is changed for only
one patient.

If fail to change the doctor’s name from “John” to “John Miller” for
both two records -> update anomaly.

INFO20003 Database Systems © University of Melbourne 23

Normalisation exercises

2. Consider a relation R (A, B, C, D) with the following FDs:

 AB → C, AC → B, BC → A, B → D

The possible candidate keys of R are AB, AC, and BC, since each of those
combinations is sufficient to uniquely identify each record.

Let’s consider AB for instance. From AB → C we see that AB uniquely
identifies C, and since B alone uniquely identifies D, AB together have
covered CD, i.e. the entire set of attributes.

List all the functional dependencies that violate 3NF. If any, decompose R
accordingly. After decomposition, check if the resulting relations are in
3NF, if not decompose further.

INFO20003 Database Systems © University of Melbourne 24

Normalisation exercises

2. Consider a relation R (A, B, C, D) with the following FDs:
 AB → C, AC → B, BC → A, B → D

Notice: To be in 3NF, a relation should be in 2NF and all the transitive
functional dependencies should be removed

Q1: Is This relation in 2NF?

 No.
 partial functional dependency B → D

Q2: How to decompose it?

Another relation

R1 (A, B, C) and R2 (B, D)

INFO20003 Database Systems © University of Melbourne 25

Normalisation exercises

3. Consider the following relation StaffPropertyInspection:

StaffPropertyInspection (propertyNo, pAddress, iDate, iTime, comments,
staffNo, sName)

The FDs stated below hold for this relation:

 propertyNo, iDate → iTime, comments, staffNo, sName

 propertyNo → pAddress
 staffNo → sName

From these FDs, it is safe to assume that propertyNo and iDate can serve as
a primary key.

Your task is to normalise this relation to 3NF. Remember in order to
achieve 3NF, you first need to achieve 1NF and 2NF.

INFO20003 Database Systems © University of Melbourne 26

Normalisation exercises

3. Consider the following relation StaffPropertyInspection:

StaffPropertyInspection (propertyNo, pAddress, iDate, iTime, comments,
staffNo, sName)

 propertyNo, iDate → iTime, comments, staffNo, sName

 propertyNo → pAddress
 staffNo → sName

Q1: Is this relation in 1NF (repeating groups)?

 Yes

Q2: Is this relation in 2NF (partial dependencies)?

 No
 propertyNo → pAddress
 Decompose it!

INFO20003 Database Systems © University of Melbourne 27

Normalisation exercises

3. Consider the following relation StaffPropertyInspection:

StaffPropertyInspection (propertyNo, pAddress, iDate, iTime, comments,
staffNo, sName)

 propertyNo, iDate → iTime, comments, staffNo, sName

 propertyNo → pAddress
 staffNo → sName

A2: Decompose into 2 relations:

Q3: Is this relation in 3NF (transitive dependencies)?
 No
 staffNo → sName

INFO20003 Database Systems © University of Melbourne 28

Normalisation exercises

3. Consider the following relation StaffPropertyInspection:

StaffPropertyInspection (propertyNo, pAddress, iDate, iTime, comments,
staffNo, sName)

 propertyNo, iDate → iTime, comments, staffNo, sName

 propertyNo → pAddress
 staffNo → sName

A3: Decompose into 3 relations:

INFO20003 Database Systems © University of Melbourne 29

Any questions?

Normalisation exercises

