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Abstract

Dominating Set and Independent Set are well-known NP-complete problems. Each has

been extensively studied in the classical RAM model, but studying them in the data

stream model is relatively less developed. In this work, we demonstrate algorithms that

approximate these problems or their solution size in streamed sparse graphs.

The Caro-Wei Bound states that for every graphG, the cardinality of maximum indepen-

dent set is lower-bounded by
P

v2V (G)
1

d(v)+1 , where d(v) is the degree of v. For graphs

with average degree d and maximum degree �  ✏
2
n

3 (d + 1)3
, we show that the Caro-Wei

Bound can be (1± ✏)-approximated in insertion-only streams using O(d✏�2 log n log ��1)

space and one pass. The space usage can be further reduced if the stream is vertex-arrival

and random-order. Moreover, with a slightly worse approximation ratio and additional

space, the maximum-degree constraints can be removed. Significantly, this algorithm

can be modified to report an actual independent set in the online streaming model with

O(log ✏�1) update time and O(log ✏�1 log n log ��1) working space.

For streamed trees and forests, Chitnis and Krauthgamer showed that the independence

number can be 3/2-approximated using the number of leaves [84], but no streaming

algorithm is given. We show that the number of leaves can be (1±✏)-approximated in one

pass and polylog(n)-space. Also, by including the number of support vertices (vertices

that are adjacent to leaves, a notion from discrete mathematics), the approximation

ratios can be further improved. Using two passes and Õ(
p
n) space, our algorithm

can achieve a 2(1 ± ✏) approximation to the domination number and a 4/3(1 ± ✏)-

approximation to the independence number. This technique can similarly be applied to

other classic graph problems, such as the matching number and the covering number.
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Chapter 1

Introduction

1.1 Dominating Set and Independent Set

The dominating set problem and the independent set problem are two well-known combi-

natorial optimization problems on graphs. Given a graph, both problems can be viewed

as selecting a subset of its vertices set that satisfies certain properties. To illustrate, we

say a vertex can cover another vertex if there is an edge between them, and two vertices

are independent of each other if there is no edge between them. With this definition, a

subset of vertices is a dominating set if they can cover all other remaining vertices in the

same graph. And a subset of vertices is an independent set if every pair of vertices in this

subset are independent of each other. Trivially, every vertex itself is an independent set,

and the full vertex set is a dominating set. Typically, instead of finding just one valid

solution, we are more interested in finding the optimal one. That is, the independent

set with the largest size (i.e., maximum independent set MIS ), and the dominating set

with the smallest size (i.e., minimum dominating set, MDS ). And we use domination

number (�) and independence number (�) to denote the size of the optimal solution to

these two problems.

Take the graph in Figure 1.1 as an example. In this graph, vertices E and F form a

minimum dominating set, as all of the other vertices are dominated/covered by them

and there does not exist a smaller dominating set. Also, the set of vertices A, C, D, and

G is the maximum independent set, as there are no edges among them and there does

not exist a larger independent set.

1



Chapter 1 Introduction 2

D E F G

A B C

Figure 1.1: Example of dominating set and independent set

The origin of the dominating set and the independent set problem can be traced back to

the k-Queens problem in the 18th century, which asks whether we could place k chess

queens on a k ⇥ k chessboard so that no two queens are attacking each other. Later in

1957, Berge [12] formally introduced both problems as “cover” and “internally stable

set” 1. Since then, these two problems have drawn lots of attention not only because

of their wide range of applications, but also their close connections with other graph

problems.

The dominating set problem and its variants are very suitable to describe problems

where the main goal is to select a group of supervisors/guardians, or a group of sources

for information dissemination and interaction. For example, in large wireless sensor net-

works, it is very energy-consuming to keep all sensors activated. And in reality, sensors

do not have to be active at all times, keeping every sensor turned on will unnecessarily

waste lots of energy. To resolve this, one can let only a small set of nodes be “awake”

(i.e., responsible for sensing and gathering data) and make other nodes “sleep” [107]. By

doing this, most of sensors are o↵ during waiting time, thus it helps significantly reduce

the energy consumption. Moreover, in order to be able to notify all the sleeping nodes

when some jobs arrive, the chosen awake nodes must form a dominating set. Other

applications of the dominating set include modeling routing and broadcasting problems

in multi-hop ad-hoc networks [28, 120, 124], addressing the controllability of networks

[98, 124], describing protein interactions in biological networks [96], and generating sum-

marization for multi-document in information retrieval [111].

Similarly, the independent set problem has many applications in optimization and schedul-

ing, especially when the “conflicts” or the “collisions” among elements should be avoided.

For example, automatic label placement is the task of automatically placing texts or

labels on a diagram (e.g., a map or a chart), and we do not want the placed texts

overlapping with each other. This problem can be easily modelled as an independent

1
Some works have also used “externally stable set” to refer to the dominating set
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set problem, where each node represent an available placement, and two nodes share

an edge if they overlap with each other [56]. By utilizing the maximum independent

set algorithm, we can find the maximum set of texts to be placed without interfering

with each other. Other applications of the independent set route/path planning [80],

detecting collisions in voting pools [3], and identifying non-repetitive genetic sequences

in genetic systems design [68].

Besides its wide applications, the independent set problem is closely related to other

graph problems. For instance, a subset of vertices is a vertex cover (or hitting set) if for

every edge, at least one of its endpoints is in the set. In Figure 1.1, for example, the set

{B,E, F} is the minimum possible vertex cover. It is known that the vertex complement

of the independent set (i.e., the set of vertices that are not in the independent set) is

itself a vertex cover. To illustrate, assuming there is an edge that is not covered by

vertices other than the independent set, then this edge must have both endpoints in

the independent set, violating its definition, hence a contradiction. Also, a matching

of a graph is a subset of its edges, such that none of them share a common vertex.

For example, in Figure 1.1, there are multiple matchings of size 3 (e.g. edges (D,E),

(F,G), and (A,B)). Denote the number of vertices in the graph by n, the size of the

maximum matching by �, and the size of maximum independent set by �. It is known

that n�� � � � n�2�. The lower bound can be proved by taking a maximum matching

and adding all vertices that are not in the matching as an independent set. And the

upper bound can be proved via arguing that no more than � vertices in the maximum

matching can be in the independent set, hence we have �  �+ (n� 2�) = n� �.

1.2 Computing MDS and MIS

The minimum dominating set problem (MDS) and the maximum independent set prob-

lem (MIS) have been extensively studied in the classical random-access machine (RAM)

model, where the whole graph is stored in the memory and the primary resource of

concern is time. Given an arbitrary input k > 0, deciding whether there exists a domi-

nating set of size at most k in general graphs is NP-complete [79]. Finding the minimum

dominating set and computing the domination number in general graphs cannot be eas-

ier than this decision problem, hence they are both NP-hard. And their hardness even
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hold in planar graphs with maximum degree of three [55] and in unit disk graphs 2 [34].

Similarly, in general graphs, given an arbitrary input k > 0, deciding whether there is

a maximum independent set of size at least k is also NP-complete [79]. Thus, finding

the maximum independent set and computing the independence number are both NP-

hard, and it is even hard to approximate them within factor of n1�✏, for any ✏ > 0

[62, 125]. Currently, the best brute-force algorithm can compute the MIS in O(1.1996n)

time [122], and the exponential base can be further reduced (but remains greater than

1) if the maximum degree is bounded by a constant [121, 122]. Hence, researchers have

been seeking e�cient algorithms under compromises, such as computing approximate

results, restricting the input to specific graph classes, or establishing general upper/lower

bounds on the domination/independence number.

Like many optimization problems, MDS and MIS can be well approximated via simple,

but powerful greedy algorithms. For the dominating set, the greedy algorithm iteratively

picks the node that dominates the most undominated nodes, and removes it and all of

its edges from the graph. It can achieve an (H� + 1)  (ln� + 2) approximation in

every graph, where � is the maximum vertex degree and H� is the �-th harmonic

number [73, 91]. This approximation ratio is nearly optimal: as shown by reduction

from the set cover problem, it is NP-hard to achieve an approximation ratio better than

(1 � ✏) ln� for every ✏ > 0 [43, 78]. To see why the greedy algorithm fails to find an

optimal solution, consider Figure 1.1 above. In this graph, the minimum dominating set

has size two (E and F ), while the greedy algorithm outputs a dominating set of size 3

(B, E, and F ). For actual graph examples where the analysis of the greedy algorithm

is tight (i.e. outputs an O(ln�) approximation), see Example 1.1 and Example 1.2 in

Li et al. [88].

As for the independent set, its greedy algorithm also constructs a solution iteratively

until there are no vertices left. In each iteration, it picks the vertex with the smallest

degree and removes all of its neighbors. Halldórsson and Radhakrishnan [58] have shown

that this greedy algorithm can achieve an approximation ratio of �+2
3 , where � is the

maximum vertex degree. Figure 1.2 is an example of why the greedy algorithm might

fail to output the optimal solution. In the first iteration, the algorithm might choose

either one of B, C, D, F . If it chooses B, D, or F , it outputs the optimal solution

2
The intersection graph of unit disks in the Euclidean plane, where each node is a unit disk, and two

nodes share an edge if they intersect with each other
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A B

C

DE

F

Figure 1.2: Counter example for the independent set greedy algorithm

(which has size 3). However, if it chooses C, then its output solution is at most of size

2.

In the real world, most of graphs are sparse (i.e., have O(n) edges or constant average

degree) [109]. In these relatively sparse graphs, we can approximate these two problems

with approximation ratios proportional to their average degree. For instance, in graphs

with bounded arboricity 3, ↵, an 2↵�1 approximation of dominating set can be achieved

based on solving its relaxed linear program [10, 46]. Also, it is known that for a graph

G, its independence number � �
P

v2V (G)
1

1+d(v) � n

d+1
, where d(v) is the degree of

vertex v and d is the average degree of G. The former term (i.e., � �
P

v2V (G)
1

1+d(v))

is known as the Caro-Wei Bound [29, 118], and the later term (i.e., � � n

d+1
) is known

as the Turán Bound [115]. Clearly, either bound gives a constant approximation for the

independence number when the average degree is bounded by a constant (i.e., when the

graph is relatively sparse). It is worthwhile to mention that there is a greedy algorithm

that outputs an independent set of size at least the Caro-Wei Bound in expectation.

Given a permutation (i.e., ordering) of the vertices, this permutation-based greedy al-

gorithm adds a vertex to the independent set if it has the smallest order among it and

its neighbours. By choosing the permutation randomly, each vertex has the smallest

order with probability 1
dv+1 , one can then show that the expected size of the chosen

independent set is exactly the Caro-Wei Bound. Moreover, by utilizing the results of

semi-definite programming, the approximation ratio of the independent set can be im-

proved to Õ( d

log2 d
) [11], where d is the average degree and we use Õ to suppress the

logarithmic factors. This result has an almost matching lower bound, it is NP-hard to

achieve an approximation ratio of O( �
log4 �

).

3
The minimum number of forests that this graph can be decomposed into
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The approximation ratio can be further improved in even sparser graphs. For instance,

the minimum dominating set has a polynomial-time approximation scheme (PTAS) in

planar graphs [7], unit disk graphs [69], and graphs with polynomial expansion [60].

That is, the minimum dominating set can be 1 � ✏ approximated in these graphs, for

every small constant ✏. Similarly, a PTAS has been found for finding the maximum

independent set. Moreover, in trees or forests, one can compute the dominating set

and the independent set exactly in linear time using dynamic programming. Briefly

speaking, we recursively examine the nodes in the tree and construct our solution. For

example, in the dominating set problem, for each node in the tree, we need to consider

whether it is already dominated or not. If not, we need to either choose itself or choose

one of its children (if available) to cover it. Similarly, in the independent set problem,

for each node, we can choose to add it (if its parent is not in the independent set) or

not add it to the independent set. Because there are no cycles in trees, this strategy is

guaranteed to terminate and output the optimal dominating/independent set.

1.3 The Data Stream Model

With the evolution of information technology, massive graphs with enormous amount

of nodes and edges have been generated (e.g., webpages, wireless networks, and protein

networks). For example, currently, the number of nodes in a hyperlink web graph can

be of the order 2⇥ 109 [109]. The traditional o✏ine algorithms described above can not

be used to analyze such huge graphs when limited computational space available (e.g.,

in a sensor), as they all require storing the whole graphs in memory. This challenge has

motivated studies under many new computational models, such as the data stream model

and the distributed model. In the data stream model, the universe of data elements is

known in advance, and data elements arrive sequentially in arbitrary order. In the

case of graphs, each data element could be either a single vertex together with all its

neighbors that arrived before (i.e., the vertex-arrival model), or a single edge (i.e., the

edge-arrival model). Also, if deletions of previously arrived vertices/edges are allowed,

then it is a turnstile stream. Otherwise, we refer it as a insertion-only stream 4.

4
If pre-deletions of vertices/edges (i.e., deleting a vertex/edge that has not appeared before), it is a

dynamic stream
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The data stream model receives much attention during the last two decades for several

reasons. Firstly, it nicely capture the natural ways of receiving data in the real world.

For example, the streaming processing of data might occur when monitoring data tra�c,

or receiving partial data from multiple clients. Secondly, the data stream model helps

address the situation where we want to perform some computations but only have limited

space resource available. This is because in the data stream model, the primary resource

of concern is space rather than time. Typically, the space available is much less than the

space required to store the whole stream. For example, consider the problem of finding

the number of distinct packages that pass through a sensor, the trivial solution would

be maintaining a hash map to store packages. However, it becomes very challenging

when there are huge amount of di↵erent packages passing through, as a sensor usually

does not have a su�ciently large memory to store everything. For most problems,

their streaming variants only allow o(n) bits of memory. This restriction is relaxed

to O(n log n) for some graph problems as a general graph can cost O(n2 log n) bits to

store all of its edges, which is also known as the semi-streaming model [52]. However,

for sparse graphs with a linear number of edges, semi-streaming model actually allows

us to store the whole graph, hence it is more reasonable to limit the space usage to

o(n). Moreover, the algorithms developed under the data stream model are also very

useful when an approximate answer or occasional incorrect output is acceptable. Many

industries have already benefited from using streaming techniques to help significantly

reduce their time and space cost, see [1] for a public software library and its users (e.g.,

Yahoo, Druid, etc.)

The study of streaming graph problems was initiated by Henzinger et al. [65] who study

following paths and testing connectivity. In the last decade, many graph problems have

been extensively studied in the streaming model, including matching [26, 32, 33, 39, 49],

and vertex cover [6, 31–33, 94]. See [93] for a comprehensive survey.

1.4 Streaming MDS and MIS

The size of a dominating set or an independent set can be as large as ⇥(n) (consider

a path of length n). If we restrict the space usage to be sublinear in the number of

vertices (i.e., o(n)), we often cannot store the entire solution, hence making all algorithms

infeasible. Therefore, when only sublinear space is available, we are often interested
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in just finding the size of the optimal solution (i.e., the domination number and the

independence number), rather than the actual solution. The optimal size approximation

has been extensively studied in matching [26, 39, 49]. However, very little research has

been done in the streaming domination number and independence number. Generally,

current algorithms for both problems can be summarized into two types, based on the

techniques they have used.

On the one hand, people have relaxed the stream order from arbitrary to random,

and studied techniques of converting known constant-query graph property testing and

constant-time approximation algorithms into constant-space streaming algorithms. Based

on this, Monemizadeh et al. [97] designed a streaming algorithm that approximated the

domination number in bounded-degree graphs, with an additive error term of ✏n. Their

algorithm relied on approximating the distributions of the k-disc of the graph, the sub-

graph induced by a vertex and its neighbors that are at most k away. Peng and Sohler

[106] further extended this result to general graphs and graphs with bounded average

degree (e.g., planar graphs). In the same paper, Peng and Sohler [106] showed that

the independence number in planar graphs can be approximated within a multiplicative

factor of 1 + ✏ using only a constant amount of space. However, it is worth mentioning

that the constant in space is very large, i.e., O(2(1/✏)
(1/✏)log

O(1)(1/✏)

). One crucial fact they

have relied on is that � in planar graphs is ⇥(n), so that it is fine to ignore the vertices

with degree higher than ⇥(1/✏) as there are at most ⇥(✏n) of them.

On the other hand, some works have focused on approximating well-established upper

and lower bounds in the streaming settings. Halldórsson et al. [57] studied general hyper-

graphs and gave a one-pass randomized insertion-only streaming algorithm, which uses

O(n) space and outputs an independent set with size no less than the Caro-Wei bound

in expectation. Their core algorithm is based on the fact that given a independent set

I, V \ I is a hitting set (or a vertex cover). Hence, for every hyper-edge, assuming we

have a priority function f that maps each vertex into a natural number 2 N, we could

add the vertex with largest value to form a hitting set, and the remaining graph itself

is a independent set. A trivial choice of the function f would be a random permutation

of the vertex set, which can be stored in O(n log n) space. By choosing f carefully such

that vertices are mapped to log n levels with exponentially decreasing probability (i.e., a

vertex is mapped to the ith level with probability 1
2i ), the space usage could be further

reduced to O(n). Moreover, their algorithm can be applied to an even stricter model, the
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online streaming model, which combines the properties of data streams model and online

model. In online streaming model, elements (i.e., edges) arrive one by one in arbitrary

order, the algorithm must maintain a valid solution at any given time of the stream, and

every decision is irrevocable. For example, in online streaming independent set, initially

the solution is the set of all vertices. As an edge arrives, the algorithm must decide which

vertex should be removed from the solution to maintain a valid independent set. Once

a vertex is removed from the solution, it cannot be added back later. The solution can

be stored locally, or can be stored in a remote server such that the algorithm “reports”

to the server about its decisions.

Moreover, it is not hard to see the Caro-Wei Bound is very similar to the �1 frequency

moment 5 (or the harmonic mean) of the degree vector. Although (1± ✏)-approximating

the �1 frequency moment in general graphs requires ⌦(✏�1/2
n) bits [18], it is achievable

in sublinear space when the value of the frequency moment is su�ciently large. Hence,

Cormode et al. [40] designed an algorithm that (1±✏)-approximates the Caro-Wei Bound

with constant success probability using O(n logn
�L✏

2 ) space, where �L is a known lower

bound of the Caro-Wei Bound. By letting �L = n

d+1
(the Turán Bound), the space

usage becomes O(✏�2
d log n). In the algorithm, they sampled vertices with probability

p = 3
✏2�L

beforehand and record the degree of the sampled vertices during the stream.

They return 1
p

P
v2S

1
d(v)+1 as their estimate of the Caro-Wei Bound, where S is the

set of sampled vertices. By simple analysis, one can show that the returned estimate is

an unbiased estimate of the Caro-Wei Bound and its variance is bounded by 1/p of the

Caro-Wei Bound.

As for the lower bound, Chitnis and Cormode [31] adapted the lower-bound reduction

technique for the set cover problem [5] and demonstrated that for graphs with arboricity

�+2 for � � 1, any randomized �

32 -approximation algorithm for the minimum dominat-

ing set problem would require ⌦(n) space. This lower bound even holds under the vertex

arrival model. Cormode et al. [40] have proved a lower bound for approximating the

Caro-Wei Bound. They showed that every randomized algorithm with constant error

probability would require ⌦( n

�Lc
2p
) space to c-approximate the Caro-Wei Bound, where

�L is a known lower bound of the Caro-Wei Bound and p is the number of passes allowed.

This implies a ⌦( d

✏2
) space lower bound for every one-pass algorithm that approximates

the independence number with a ratio of d(1± ✏).

5
The sum of the reciprocal of each vertex’s degree, i.e.,

P
v2V (G)

1
d(v)
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1.5 Research Questions

Although results have been obtained for both the dominating set and the independent

set in sparse streamed graphs, there are still some gaps between the upper bounds and

the lower bounds.

For dominating set, no upper bound has been established for graphs with bounded

arboricity ↵, and the lower bound from [31] does not rule out the possibility of O(↵)

approximation algorithms, which can be achieved in o✏ine algorithms [10, 46]. Besides,

the current best result for bounded-degree graphs [97] only works in randomly ordered

streams and its error rate is ✏n. Can we achieve the same approximation (or even better)

in arbitrary ordered streams? Lastly, no research has been done to study streamed

graphs that are even sparser, such as the planar graphs and trees.

For independent set, although positive results have been obtained on approximating the

Caro-Wei Bound [40, 57], there is still a log n gap between the upper bound and the lower

bound. Moreover, there are still several remaining problems on even sparser streamed

graphs (like planar graphs and trees), which either costs constant but enormously large

space [106], or has not been studied before.

Hence, we propose our research question as follows.

Given sub-linear space and constant-number passes of a sparse graph stream,

can we design streaming algorithms that approximate the domination number

and independence number with better ratio? If so, what is the best approxi-

mation ratio we can achieve for di↵erent graph classes and space classes?

1.6 Our Contributions

In this work, we have studied algorithms for approximating various graph optimization

problems (e.g., the independence number) in streamed sparse graphs, especially in graphs

with low average degree (including graphs with bounded arboricity and degeneracy, as

well as planar graphs) and streamed forests.

For streamed graphs with average degree d and maximum degree �  ✏
2
n

3 (d + 1)3
6, our

6
which is O(n) if d and ✏ are constants
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algorithm can (1± ✏)-approximate the Caro-Wei bound in small space. Since the Caro-

Wei Bound is at least the Turán Bound 7, our result gives a d(1±✏)-approximation of the

independence number. Our algorithm fails with probability at most �, and its space us-

age is O(d✏�2 log n log ��1) in arbitrary-order edge-arrival streams, O(log(d✏�2) log ��1)

in random-order vertex-arrival streams. It simulates the permutation-based greedy al-

gorithm for independent set in data streams with the help of ✏-min wise hash function.

Recall that given a random vertex permutation, the greedy algorithm outputs an in-

dependent set of size at least the Caro-Wei Bound in expectation, but storing such

permutation would require ⌦(n log n) bits. An ✏-min wise hash function can mimic a

random permutation in small space as it maps input elements to values 2 R, such that

for each element, the probability that it has the smallest hash value across a set of ele-

ments, A, is 1±✏

|A|
. However, the error rate of this algorithm cannot be bounded in general

graphs because of the positive correlation between a vertex and its neighbours’ neigh-

bours. To illustrate, consider a path with vertices v, u, w and edges (v, u), (u,w). If v

has smaller hash value than u, than it provides a lower bound on u’s hash value. Hence,

w is more likely to be smaller than u as well. We show that, this positive correlation

can be bounded if the maximum degree is not too large.

In addition, our algorithm can be modified to report an actual independent set with

fast update time (i.e., time used to process each edge) and small working space (i.e.,

space other than used to store the solution) in the online streaming model. Also, the

maximum degree limitation in our edge-arrival algorithm can be removed using the

heavy hitter sketch and an extra post-processing step. This is because according to

the Turán Bound, the independence number is at least n

d+1
. Hence, the independence

number of the subgraph after removing all high-degree vertices (i.e., vertices with degree

higher than ✏
2
n

3 (d + 1)3
) is still within ✏ away from the original independence number.

Therefore, it is su�cient to use heavy hitter sketch to obtain and remove all high-

degree vertices, and estimate the independence number of the subgraph. The space

usage of the new algorithm is O(d
4
✏
�2 log2 n) (when failing with low probability), and

the returned results is slightly biased (i.e., (1 � ✏)(1 ± ✏)-approximation). Its update

time is O(log n log(d
4
n logn
✏2

)) and its post-processing time is O(d
5
✏
�4). Note that since

post-processing is required, the new algorithm cannot be used in online streaming model.

7
See [17] for a simple proof
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Di↵erence between our results and the results in [40, 57]: Halldórsson et al. [57]

gave an online streaming algorithm that outputs an actual independent set of size

at least the Caro-Wei Bound in expectation. Their algorithm has update time log \

and working space usage O(n). Cormode et al. [40] designed an turnstile algorithm

that (1 ± ✏)-approximate the Caro-Wei Bound with probability at least 1 � � using

O(d✏�2 log n log ��1) space. However, it cannot report an actual set. Our algorithm has

advantages from both works. Firstly, when the stream is insertion-only and the maxi-

mum degree is not too large, our algorithm achieves asymptotically the same approxi-

mation ratio as [40] using asymptotically the same space. If we restrict the stream to

be vertex-arrival and random-order, the space usage can be further reduced. Moreover,

it can be modified to the online streaming model with faster update time (O(log 1/✏))

and less extra working space (O(log ✏�1 log n log ��1)). And both its error rate and its

fail rate are bounded by our analysis.

Our results for Caro-Wei Bound approximation in streamed sparse graphs with bounded

average degree are summarized in Table 1.1. The “Stream” column indicates the stream

type, we use Edge for edge-arrival model and Vertex for vertex-arrival model. Also,

we use Turn. and Ins. to indicate the turnstile and the insertion-only streams, respec-

tively. The “Order” column specifies the stream order, where Arb. stands for arbitrary-

order streams, and Ran. stands for random-order streams. “Approx.”, “Update”, and

“Space” columns contains the approximation ratio, update time and space usage of each

algorithm. The “Online” column has value “Yes” if the algorithm fits into the online

streaming model. All algorithms in Table 1.1 have constant success probability, except

result on the first row does not have error bound, and result on the fifth row has high

success probability (i.e., 1�n
�c for some constants c). And rows marked with ⇤ require

the maximum vertex degree to be no more than ✏
2
n

3(d+1)3
.

Stream Order Approx. Update Space Online Ref

Edge Ins. Arb. exp. O(log n) O(n) Yes [57]
Edge Turn. Arb. (1± ✏) O(1) O(d✏�2 log n) No [40]
Edge Ins. Arb. (1± ✏) O(log ✏�1) O(d✏�2 log n) No This⇤

Edge Ins. Arb. (1± ✏) O(log ✏�1) O(log ✏�1 log n) Yes This⇤

Edge Ins. Arb. (1� ✏)(1± ✏) O(log n log(d
4
n logn
✏2

)) O(d
2
✏
�2 log2 n) Yes This

Vertex Ins. Ran. (1± ✏) O(1) O(log(d✏�2)) No This⇤

Any Any c - ⌦( d

c2
) - [40]

Table 1.1: Streaming Caro-Wei Bound approximation in graphs with average degree
d
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For a streamed forest, we introduce the idea of support vertices in approximating the

domination number, the independence number, as well as other classical graph problems

(i.e., the matching number and the covering number). A vertex is a support vertex if

it is adjacent to (share an edge with) at least one leaf. It is known that in trees, by

knowing the cardinality of non-leaf vertices or the leaves, one can 3-approximate the

domination number [47, 84, 86, 95], 3/2-approximate the independence number [84],

and 2-approximate of the matching number as well as the covering number [25, 49]. We

show that, with additional knowledge about the number of support vertices, we could

improve the approximation ratio to 2 for domination number, to 4/3 for independence

number, and to 3/2 for matching number and covering number.

We also present poly(log n)-space streaming algorithms that (1±✏)-approximate the size

of leaves and the size of non-leaf vertices. Moreover, we show that the number of support

vertices can be (1 ± ✏)-approximated using 2 passes and Õ(
p
n) space when it is large.

When the number of support vertices is small, either the number of non-leaf vertices is

also small (so that we can estimate both of them accurately), or the number of non-leaf

vertices is too large such that there is no need to use support vertices. We remark

that the cardinality of the three quantities we used (i.e., support vertices, leaves, and

non-leaf vertices) can be easily estimated in other models. For example, in distributed

settings, every vertex can exchange information with its neighbours at each round, a

graph problem is solved via analysing and integrating the information obtained at each

node across certain number of rounds. We could use one round to check whether the

vertex is a leaf or not, and another round to check whether it is a support vertex or not.

Each communication round can be done using only O(1) message size.

Our results for streamed forests are summarized in Table 1.2, Table 1.3, and Table 1.4

respectively. In these tables, we use the same notations as the Table 1.1.

For domination number and connected domination number approximation, our result

and other relevant studies are summarized in Table 1.2.

Prob. Graph Stream Order Pass Approx. Space Citation

�

Tree Edge Turn. Arb. 1 3(1± ✏) poly(log n) [84]
Forest Edge Turn. Arb. 2 2(1± ✏) Õ(

p
n) This

Forest Any Any 1 3/2� ✏ ⌦(
p
n) [49]

�C Tree Edge Turn. Arb. 1 (1± ✏) poly(log n) This

Table 1.2: Summary of streaming tree and forest domination number approximation
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And for independence number, Table 1.3 compares our results with other studies.

Graph Stream Order Pass Approx. Space Citation

Forest
Edge Turn. Arb. 1 3/2(1± ✏) poly(log n) [84], This
Edge Turn. Arb. 2 4/3(1± ✏) Õ(

p
n) This

Any Any 1 4/3� ✏ ⌦(
p
n) [49]

Table 1.3: Summary of streaming forest independence number approximation

Lastly, for both tree/forest matching and vertex cover, Table 1.4 summarizes our result

in comparison with other related results.

Graph Stream Order Pass Approx. Space Citation

Forest

Edge Ins. Arb. 1 2(1± ✏) Õ(
p
n) [49]

Edge Ins. Arb. 1 2(1± ✏) poly(log n) [39]
Edge Turn. Arb. 1 2(1± ✏) poly(log n) [25]
Edge Turn. Arb. 2 3/2(1± ✏) Õ(

p
n) This

Any Any 1 3/2� ✏ ⌦(
p
n) [49]

Table 1.4: Summary of streaming forest matching/covering number approximation

1.7 Organizations

In Chapter 2, we introduce some preliminaries, including definitions about the graphs

and the problems, as well as some fundamental streaming and probability tools that are

used in our algorithm.

Chapter 3 is about some other related works, including typical o✏ine algorithms for

computing the optimal dominating and independent set, upper and lower bounds for

the domination and independence number, and additional results in the streaming dom-

inating set and independent set.

Then in Chapter 4, we present our work on tree/forest streaming domination number.

To begin with, in Section 4.1, we recap some existing 2-approximation schemes for tree

domination number that use only easily estimable graph characteristics, such as the

number of non-leaf vertices. And we show that by adding other graph characteristics in

the scheme, we could further improve the approximation ratio to 3/2. Next in Section

4.2, we cover streaming algorithms that can well-approximate these characteristics.

Our results on independence number are shown in Chapter 5. Firstly, in Section 5.1, we

demonstrate our algorithms for approximating the Caro-Wei Bound in sparse graphs.
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And then we introduce our results on tree/forest. Similarly, Section 5.2 includes a

previous 3/2-approximation for trees and our new 4/3-approximation results with the

help of additional graph characteristics. In the last section (Section 5.3), we rely on

some results from Section 4.2 and present our streaming algorithm to approximate the

independence number.

The organization of Chapter 6 is very similar to Chapter 4 and the last two sections of

Chapter 5. We start this chapter with some known results on approximating the match-

ing number, and we show how support vertices can help improve this approximation

ratio. And lastly, we conclude that the streaming algorithms introduced in 6 can also

be used to approximate the matching number.

Finally, in the last section (Section 7), our results are summarized in terms of their

usefulness, novelty, and limitations. Also, we propose several potential directions for

future studies.



Chapter 2

Preliminaries

2.1 Problem Definitions

2.1.1 Graph Definitions

For a undirected graph G, let V (G) be the set of G’s vertices, and let n represent the

number of G’s vertices, |V (G)|. Also, we let E(G) be the set of edges in G, and m be

the total number of G’s edges. A graph is a tree if it is connected and has no cycle,

i.e., every two vertices is connected via exactly one path. If a graph is acyclic but not

connected, then it is a forest, which can be viewed as a group of disjoint trees. It is

known that in tree, m = n� 1. Similarly, in a forest, m = n� k, where k is the number

of tree components. For a subset of vertices, S ✓ V (G), let N(S) denote the set of

vertices whose neighbours are in S (excluding S itself), and N [S] to represent S[N(S).

Moreover, let d(v) be the degree of a vertex v, � be the minimum vertex degree of G, �

be the maximum vertex degree of G, and d be the average degree of G.

The quantities Deg i(G), Hi(G), and S(G) are defined as follows:

Definition 2.1. (Deg i and Hi) Deg i(G) is the set of vertices in G that have degree

equal to i. Similarly, Hi(G) is the set of vertices in G that have degree � i. When the

context is clear, we use Deg i and Hi.

Definition 2.2. (S) The support vertex set of a graph G is the subset of G’s vertices

which are adjacent to at least one leaf (or end vertex). Denote the support vertex set

as S(G), or S if the context is clear. A similar definition appears in [42].

16
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2.1.2 Graph Problems

The dominating set, DS(G), of a graph is a subset of V (G), such that each vertex in

G is either in DS(G) or adjacent to at least one vertex in DS(G). Let MDS(G) be the

minimum dominating set of graph G, and �(G) be the domination number (i.e., the size

of MDS(G)).

Similarly, the connected dominating set, CDS(G), of graph G is a variant of the

dominating set. Besides the domination requirement, in a connected dominating set,

the subgraph induced by the chosen set needs to be connected. That is, every vertex in

CDS(G) must be adjacent to at least one other vertex in CDS(G). We let MCDS(G) be

the minimum connect dominating set and �C(G) be the connected domination number

(i.e., the size of the minimum connected dominating set).

A subset of vertices is an independent set (or a stable set) if and only if the subgraph

induced by it contains no edges. Denote such a set as IS(G), and as MIS(G) if it has

the maximum cardinality across all valid sets. Let �(G) be the cardinality of MIS(G),

which is also known as the independence number.

A matching of G is a subset of G’s edges, such that none of them shares a common

endpoint. Let Mat(G) represent a valid matching and MMat(G) represent the maximum

cardinality matching. Let � be the size of the maximum matching, the matching number.

A vertex cover (or VC(G)) of a graph G is a subset of G’s vertices, such that for every

edge in G, at least one of its endpoint is in VC(G). Denote the minimum cardinality

vertex cover asMVC(G) and its cardinality as ⌧(G) (also known as the covering number).

2.1.3 Randomized and Approximation Algorithms

An algorithm is randomized if it has access to a sequence of random bits, and it utilizes

them to guide its behavior. There are generally two types of randomized algorithms, Las

Vegas and Monte Carlo. A randomized algorithm is a Las Vegas algorithm if it always

returns the correct solution, but some resource used (e.g., time, space) is only bounded

in expectation. For example, the Quicksort algorithm is guaranteed to sort correctly;

its running time is O(n log n) in expectation, but O(n2) in the worst-case scenario. And
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an algorithm is Monte Carlo if it has worst-case guarantees on the resources usage, but

it might return an incorrect solution with bounded probability.

Approximation algorithms are often found with NP-hard problems. It is known that

if P 6= NP, then NP-hard problems cannot be solved e�ciently in polynomial time.

Approximation algorithms help address this problem by trading accuracy for e�ciency.

Approximation algorithm runs e�ciently, but instead of finding the exact or optimal

solution, the output of the algorithm is only guaranteed to be within a fixed distance

from it. And such distance is often referred to as the approximation ratio.

Approximation ratio: Let A be an algorithm for a maximisation problem P , and ⇧

be an instance of P . We use A(⇧) to represent the solution returned by running A on

⇧, and OPT (⇧) be the optimal solution of ⇧. For c > 1, we say that algorithm is a

factor c-approximation algorithm if

OPT(⇧)

c
 A(⇧)  OPT(⇧) (2.1)

Similarly, if P is a minimisation problem, the algorithm A is a c-approximation algorithm

if

OPT(⇧)  A(⇧)  cOPT(⇧) (2.2)

2.1.4 Complexity Notations

We use the classic complexity notations to represent the resources required by our algo-

rithms. In big-O notation, O, denotes the asymptotic upper bound of a function. And

for functions f(n) and g(n), f(n) 2 O(g(n)) if there exist two positive constants c and

n0, such that

|f(n)|  c|g(n)| for all n � n0 (2.3)

Similarly, we could define the asymptotic lower bound of a function. For two functions

f(n) and g(n), f(n) 2 ⌦(g(n)) if g(n) 2 O(g(n)). And two functions are asymptotically

equivalent (f(n) 2 ⇥(g(n))) if both f(n) 2 O(g(n)) and f(n) 2 ⌦(g(n)) hold.
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Lastly, we use the little-o notation, o, to denote a function which grows strictly asymp-

totically slower than another function. So f(n) 2 o(g(n)) if and only if for every positive

constant ✏, there exist a positive constant n0, such that

|f(n)|  ✏|g(n)| for all n � n0 (2.4)

Similarly, we define f(n) 2 !(g(n)) if and only if g(n) 2 o(f(n)), meaning that f(n)

grows asymptotically faster than g(n).

Sometimes we use Õ, ⌦̃, ⇥̃, õ, and !̃ to suppress the logarithm factors. For example,

for every constant c > 0, we have O(n logc n) = Õ(n).

2.2 Probability Theory

In probability theory, it is known that for a countable set of events, the probability that

at least one of them happens is no larger than sum of the probabilities that each event

happens by their own. That is, let A be a countable set of events (of size k) and Ai be

the i-th event,

Pr[A1 _ · · · _Ak] 
kX

i=1

Pr[Ai] (2.5)

Inequality (2.5) is also known as the union bound or Boole’s inequality.

A random variable is a variable whose outcome is determined by some random events

[15]. Formally speaking, the random variable could be viewed as a measurable function

that maps from the sample space (the set of all possible outcomes of a non-deterministic

event) to the real numbers. Random variables can be used to describe a large range

of physical phenomena and random processes. For example, we could define a random

variable X as the face value a fair dice with six faces. The value of X depends on the

uncertain outcome of each roll. The outcomes of a random variable can be discrete or

continuous, the following definitions are all referring to the discrete case (i.e., there is a

finite number of outcomes).
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In probability and statistics, Mean and variance are two commonly used terms to

describe the characteristics of a random variable or a set of random variables. For a

discrete random variable X, let I denote the sample space, which is the set of all possible

outcomes of X. Its mean (E[X], also known as the expected value or the first moment)

is defined as

E[X] =
X

i2I

xi Pr[X = xi] (2.6)

where xi is the value of X when event i occurs. The variance of X, Var(X), is

Var(X) = E[(X � E[X])2] =
X

i2I

(xi � E[X])2 Pr[X = xi] (2.7)

There are many useful properties of mean and variance. For example, the linearity of

expectation states that the expectation of a sum of random variables is equal to the

sum of their individual expectations. Moreover, the expectation of a random variable

times a constant is equal to the constant times the expectation of that random variable.

Combining them, we have

E[
X

ciXi] =
X

E[ciXi] =
X

ciE[Xi] (2.8)

Hence, the variance of a random variable can be expressed in terms of its expectation

Var(X) = E[(X � E[X])2] = E[X2]� E
2[X] (2.9)

Moreover, ifX is non-negative, it is upper bounded by a constant factor of its expectation

with constant probability. This is known as Markov’s inequality, which states that

Pr[X � k]  E[X]

k
(2.10)

for non-negativeX and k > 0. Alternatively, if both the expectation and the variance are

finite, one can bound the probability that X is not concentrated around its expectation.

Chebyshev’s inequality guarantees that
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Pr[|X � E[X]| � k]  Var(X)

k2
(2.11)

For the sum of a series of random variables, X =
P

Xi, one can obtain a stronger

concentration bound if these random variables are independent of each other. The

Cherno↵ Bound below is obtained by firstly applying Markov’s inequality to e
tX for

every t > 0, and optimizing over t by assuming that Xi are independent. For the

Cherno↵ Bound, we have

Pr[X � (1 + �)E[X]]  e
�

�2

2+�E[X] (2.12)

and

Pr[X  (1� �)E[X]]  e
�

�2

2 E[X] (2.13)

In addition, if the value of each random variables Xi is bounded by [ai, bi] and they are

still independent, Hoe↵ding [67] generalized the Cherno↵ Bound to

Pr[|X � E[X]| � k]  2e
�

2n2k2P
(bi�ai)

2 (2.14)

which is known as the Cherno↵-Hoe↵ding inequality. Panconesi and Srinivasan

[103] have extended the Cherno↵-Hoe↵ding inequality to negatively correlated Boolean

random variables.

Theorem 2.3. [103] For r negatively correlated Boolean random variables X1, X2, . . . , Xr,

let X =
P

r

i=1Xi, µ = E[X] and 0 < � < 1, then we have:

Pr
⇥
|X � µ| � �µ

⇤
 2e�

µ�2

2 (2.15)

2.3 Hash Functions

A hash function h is a mathematical function that maps elements from one universe, U ,

to another universe, U 0, i.e., h : U ! U 0. For example, h(x) = x mod 5 is a hash function
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that maps elements from R to [0, 4]. A family of hash functions, H = {h : U ! U 0},

is a group of hash functions with same input and output universe, and all of them

satisfy certain mathematical property. Since hash function must be deterministic (i.e.,

the same input must be mapped to the same output), a common technique to introduce

randomness is by selecting one hash function uniformly at random from a family of hash

functions.

Often, a good hash function should achieve both uniformity and fully independence.

That is, the hash function should map its inputs uniformly to its output universe, and

the mapping decision should be fully independent. However, such family of hash func-

tions would require m2n to store, where m is the output universe size and n is the input

universe size. The space usage can be reduced if we relax the requirements on indepen-

dence. Let [n] = {0, . . . , n � 1}. A family of hash functions, H = {h : [n] ! [m]}, is

k-wise if for every (x1, . . . , xk) 2 [n]k and (y1, . . . , yk) 2 [m]k, we have

Pr
h2H

[h(x1) = y1 ^ · · · ^ h(xk) = yk] 
1

mk
, (2.16)

where h 2 H denotes that h is choosing randomly from H. By randomly select h from H,

the hash values of x1, . . . , xk are independent of each other. Without loss of generality,

assuming m is a prime number. A common k-wise hash function, given by Wegman and

Carter[117], is constructed as

h(x) = (
kX

i=1

aix
i�1) mod m, (2.17)

where the coe�cients, ai, are k random numbers selected from m. In this construction,

a randomly selected hash function requires O(k logm) bits to store all of its coe�cients,

and its computation time is O(k) 1.

Moreover, the uniformity of a family of hash functions can be qualified by the probability

that an element has the smallest hash value among a group of elements. a family of

hash functions, H = {h : [n] ! [m]}, is ✏-min-wise if for every A ⇢ [n] and x 2 [n] A,

we have
1
Assuming exponentiation and module operation can be done in O(1) time
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A B

C D

Figure 2.1: Example of graph streams arrival order

Pr
h2H

[8a 2 A, h(x) < h(a)] =
1± ✏

|A|+ 1
(2.18)

Indyk [71] showed that the ✏-min-wise property can be achieved via a O(log 1/✏)-wise

hash family, under the constraints that |A| 2 O(✏m). Its space usage is O(log 1/✏ logm)

and its computation time is O(log 1/✏).

2.4 Streaming Models

In the data stream model, instead of being stored in the memory and supporting random

access, each element arrives one by one in the form of a data stream. The goal is using

one or several passes to solve a problem using much less space than the storing the whole

stream.

In the case of graph streams, there are two kinds of data streams available: if each

element represents an edge in the graph, then it is a edge-arrival stream. If each

element denotes a vertex together with all of its neighbours which arrived earlier, it is

a vertex-arrival stream. For example, if the graph in Figure 2.1 is fit into a edge-

arrival stream, then its arrival sequence might be: (A,B); (C,D); (A,C); (A,D); (B,D),

where each element is an edge and elements are separated by semicolon. If the graph in

Figure 2.1 is fit into a vertex-arrival stream, then the arrvial sequence might look like:

(B, {}); (A, {B}); (D, {A,B}); (C, {A,D}), where each element is a tuple containing a

vertex and its neighbours that have already arrived before, and elements are separated

by semicolon.

Moreover, we could categorize the stream into insertion-only model, turnstile model,

and dynamic model. In the insertion-only model, only insertions of stream elements

are allowed. While in turnstile and dynamic model, both insertions and deletions are
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allowed. The key di↵erence between turnstile and dynamic model is that, in turnstile

model, element can be deleted if and only if it is still present (i.e., it has been inserted

and not been deleted from the stream). However, in dynamic model, element can be

deleted regardless whether it is presented or not. For instance, consider a stream of

items identified by their unique item numbers (e.g., 1, 2, 3), and let + and � denote

whether it is an insertion or deletion. The sequence of +1;+2;+3 is an insertion-only

stream, the sequence of +1;�1;+2;+3;+1;�2 is a turnstile stream, and the sequence

of +1;+2;�2;�2;+3;+2 is a dynamic stream.

Lastly, the order of arrival can be either arbitrary or random. In arbitrary ordering,

the streaming algorithm needs to consider the worst-case ordering, but in random or-

dering, each element is arriving next with some probability, so it is often easier than the

arbitrary ordering.

Halldórsson et al. [57] have introduced the online streaming model, which preserves

properties from both data streams model and online model. In online streaming model,

data elements arrive one by one in a streaming fashion, and the server (or the processing

unit) typically does not have enough memory to store the whole stream. In addition,

at any given time of the stream, the algorithm must be able to report a solution that

satisfies the theoretical guarantees (e.g., approximation ratio) of the algorithm. Usually,

the algorithm will start with a initial solution, and modify it based on the newly arrived

element. Similar to the online model, each decision about the solution is irrevocable,

meaning that once an element is added to (or removed from) the solution, it cannot be

removed from (or added to) the solution later. The solution can be either stored locally

or in a remote server, where in the later case, the algorithm “report” to the remote

server about its decisions. We use solution space and working space to di↵erentiate

the space required to store the solution, and the additional space require to perform

computations.

The stream studied in this work has several common assumptions. Firstly, like all other

streamed graph research, it is assumed that the vertex universe is known in advance.

Secondly, for algorithms that are developed on special graphs (e.g., tree and forest), we

assume that the graph at the end of the stream is guaranteed to be that special graph,

but there is no such requirement during stream processing. Moreover, similar to relevant

research [39], we assume that the number of deletions in a turnstile stream is bounded
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by O(n) (or O(dn) if the average degree is known). This is because one of our algorithms

(Algorithm 1) keeps track of the neighbours of sampled vertices and our analysis relies

on the fact that there are at most O(n) insertions. If an arbitrary number of deletions

is allowed, the number of insertions might be arbitrarily large and thus break our space

analysis. Therefore, in order to limit the space usage, we assume that the number of

deletions is O(n) (or O(dn)), so that the number of insertions is also bounded by O(n)

(or O(dn)).

2.5 Elementary Streaming Algorithms

Here we introduce several elementary streaming tools that are used by our algorithms.

Consider a vector v with n coordinates, that is, v 2 Rn. The coordinates of v are

updated through a turnstile vector stream. Let vi be the final value of coordinate i in

v, and m be the length of the stream. Assume the value of each coordinate update is in

the range of [�M,M ].

For p > 0, the Lp norms of a vector is defined as follows:

Definition 2.4 (Lp norms). Let p > 0 be a real number, the Lp norm of vector v is

defined as kvkp = (
P

n

i=1|xi|p)1/p.

For p 2 (0, 2] and a constant error term ✏ > 0, Kane et al. [76] have developed an

algorithm to (1± ✏) estimate the Lp norm.

Theorem 2.5. [76] For all p 2 (0, 2), given error rate 1 > ✏ > 0 and fail probability

1 > � > 0, there exists an algorithm that uses O(✏�2 log(mM) log ��1) bits of space and

reports (1 ± ✏) kvkp with probability at least 1 � �. Both the update time and the report

time are Õ(✏�2 log ��1).

Moreover, defining 00 = 0, the L0 “norm” of a vector can be defined as

Definition 2.6 (L0 norm). L0 = kvk0 = (
P

n

i=1|xi|0),

which also can be interpreted as the count of non-zero coordinates of the vector. And

it has quotation around the word norm as it is not a valid norm in mathematics 2. In

streaming algorithms, Kane et al. [77] also give an e�cient algorithm for estimating L0.

2
It violates the homogeneity property of a norm, which requires kavk = |a|kvk all every scalar a
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Theorem 2.7. [77] Given error rate 1 > ✏ > 0 and fail probability 1 > � > 0, there is an

algorithm that uses O(✏�2 log(��1) log(n)(log(1/✏) + log log(mM))) bits of space and

(1± ✏)-approximates L0 with at least 1� � success probability. Its update and reporting

time is both O(log ��1).

Given k  n, a vector of length n is k-sparse if it has at most k non-zero coordinates.

For example, v = {0, 1, 2, 0, 0} is k-sparse for any k  2. The k-sparse recovery problem

has been studied under various models, which is about recovering a k-sparse vector under

di↵erent constraints. In the streaming context, when the vector is k-sparse, we want to

recover it using the least space and time as possible. And when it is not k-sparse, we

are fine with either a fail output, or a subset of its coordinates. Cormode and Firmani

[37] showed that

Theorem 2.8. [37] Given k and error probability 0 < � < 1, there exists an algorithm

that can recover a k-sparse vector exactly with probability 1 � �. The algorithm uses

O(k log n log(k/�)) bits of space.

Sparse recovery can recover the vector if it is sparse, but what if the vector is not k-sparse

and we still want find out k coordinates that are representative enough? Sometimes,

coordinates with value greater than a certain threshold are considered as representative

coordinates, and we want to output a list of coordinates that include all of them. This

problem is also known as the ✏-heavy hitter problem. An ✏-heavy hitter is defined as

Definition 2.9 (✏-heavy hitter). Given p � 1 and 0 < ✏ < 1, a coordinate i of the

vector v is an ✏-heavy hitter of v in its Lp norm if |xi|p � ✏kvkpp.

In this work, we focus on one variant of the heavy hitter problem defined as follows.

Definition 2.10 (The ✏-Heavy Hitter Problem). Given p � 1 and 0 < ✏ < 1,

output a list of size O(✏�1) that contains all ✏-heavy hitters of v.

More specifically, we only consider the case where p = 1. Many heavy-hitter algorithms

for p = 1 are developed based on the Count-Min sketch [38]. And in the same paper,

Cormode and Muthukrishnan obtained the following theorem for heavy hitters.

Theorem 2.11. [38] Given ✏,� 2 (0, 1), and a turnstile stream of coordinate updates

on vector v, there is an algorithm that uses O(✏�1 log(n) log(2 logn
��

)) space, such that
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all items with frequency at least (✏ + �)kvk1 will be outputted, and with probability

1 � �, no items with frequency less than �kvk1 will be outputted. It has update time

O(log(n) log(2 logn
��

)) and query time O(✏�1).
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Further Related Works

3.1 Dominating Set

In this section, we firstly introduce other research in computing the minimum dominating

set or the domination number. Then we cover some additional MDS studies under the

data streams model.

3.1.1 Approximating the Dominating Set

In certain graphs, for the dominating set problem, its greedy algorithm (or variants of its

greedy algorithm) has better approximation ratio guarantee than it is in general graphs.

For example, since the approximation rate of the greedy algorithm above depends on

the maximum degree, �, it gives a constant-factor approximation in constant-bounded-

degree graphs. In addition, in graphs with minimum vertex cover of size r, an O(r ln �)

approximation can be achieved, where � is the domination number [22, 50] (remark:

[50] used LP based algorithm). Siebertz [112] has obtained similar upper-bound results

on Kt,t-free graphs (graphs that do not have complete bipartite graph with t vertices

on each side as subgraphs), since every Kt,t-free graph has a vertex cover of size at

most t. His algorithm outputs a O(t ln �) approximation and is a variant of the classic

greedy algorithm. In each round, instead of selecting the vertex with the maximum

contribution, his algorithm selects a set of vertices so that it includes at least one vertex

from the minimum dominating set when the number of undominated vertices is large.

And when the number of remaining undominated vertices is small, his algorithm only

28
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performs slightly worse than the greedy algorithm. Moreover, on graphs with degeneracy

at most d, Jones et al. [74] slightly changed the greedy algorithm and obtained a d
2-

approximation algorithm.

Meanwhile, other techniques have used the linear program (LP) to compute the MDS.

In graphs with arboricity ↵, Lenzen and Wattenhofer [87] have provided a linear-time

(↵2 + 3 ↵ + 1)-approximation algorithm for the MDS problem under distributed

model, where each node is viewed as a server that can exchange information with servers

that have an edge between them. And their algorithm can be generalized to a central

algorithm with appropriate forest decomposition. Bansal and Umboh [10] then showed

a 3↵-approximation algorithm and proved that it is NP-hard to achieve approximation

ratio better than (↵ � 1 � ✏) for any ✏ > 0. Their upper-bound algorithm solves the

relaxed linear program (LP) of the dominating set problem first. And then it includes

every vertex that has weight greater than 1
3↵ into a candidate dominating set S. Lastly,

in the remaining vertices, it selects all vertices that are not dominated by S into S.

Clearly, by the construction rule, S is a valid dominating set. And Bansal and Umboh

[10] showed that the size of S is at most 3↵� via charging arguments. Moreover, since

the degeneracy d of graphs with arboricity ↵ must be between ↵ and 2↵�1 (inclusively),

hence this algorithm can be generalized to a 3d approximation algorithm for graphs with

degeneracy d. Furthermore, under a more careful analysis, Dvořák [46] has improved

the approximation of this algorithm to 2d� 1. See [88] for experimental evaluations of

these two LP-based algorithms, the greedy algorithm, and their combinations.

Currently, graphs with constant-bounded-arboricity(or constant-bounded-degeneracy)

are the most general graphs with constant MDS approximation in polynomial time.

Siebertz [112] has shown that even in K3,3-free graphs, unless NP ✓ DTIME(2n
1�✏

) for

some ✏ < 1
2 , we can not achieve an approximation rate better than c

logn
log logn in polynomial

time for some constant c.

For even sparser graphs, Cockayne et al. [36] gave a linear-time algorithm for the more

general mixed dominating set problem in trees, where nodes can have di↵erent property

such as must in the chosen in the set or must be dominated. Similarly, Takamizawa et

al. [114] and Kikuno et al. [81] independently demonstrated a linear-time algorithm for

series-parallel graphs, which can be generalized to graphs with bounded treewidth with

additional polynomial time.



Chapter 3 Further Related Works 30

3.1.2 Computing the Domination Number

For some special graph classes, �(G) is known to be a fixed number. For example, �(G)

is 1 when G is a complete graph, a star graph or a wheel graph, and �(G) = 2 when

G is a complete bipartite graph or a crown graph. In general, the domination number

highly depends on the structure of the graph, and it can vary from O(1) (e.g., a star

graph) to ⌦(n) (e.g., a path). Hence, in other graph classes, instead of determining �(G)

exactly, researchers have been trying to find its upper/lower bound in terms of other

easily estimable graph parameters, such as the maximum/minimum vertex degree.

3.1.2.1 Upper Bounds of Domination Number

Trivially, in any graph, �(G) is upper bounded by the number of G’s vertices, n. And it

is not hard to see that �(G) = n when all vertices are isolated. This upper bound can

be further reduced with the knowledge of G’s minimum vertex degree, �. Arnautov [4]

and Payan [105] showed that

�(G)  n

� + 1

�+1X

i=1

1

i
, (3.1)

which implies that

�(G)  (
ln(� + 1) + 1

� + 1
)n , (3.2)

when � � 1 [70], and this bound is proven to be asymptotically optimal when � ! 1 [2].

Imrich et al. [70] proved Bound (3.2) by calculating the expected size of a randomly

constructed dominating set. They choose a random subsetX ofG’s vertices by uniformly

and independently sampling each vertex with probability p. Let Y be the vertices in

G that are not dominated by X, clearly X and Y form a dominating set of G. It is

known that the size of the minimum dominating set, �(G), is at most the expected size

of the constructed dominating set. Hence, by choosing the probability p that minimizes

the expected size, this upper bound is obtained. Clark et al. [35] have proved a sightly

better bound when � � 1.
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�(G)  (1�
�+1Y

i=1

i�

i� + 1
)n , (3.3)

which then is improved by Biró et al. [13] in 2012. They showed that

�(G)  (1� �
2 � � + 1

1 + �
Q

��1
i=1 (1 +

�+1
i�

)
)n (3.4)

Recently, Bujtás and Klavžar [24] further improved this upper bound for �  50. They

set up a set of inequalities that involve � and (� + 2) other positive variables. And they

proved that �(G) is no more than of a specific proportion of n, where the proportion

is determined by the ratio between two of the variables. Hence, di↵erent upper bounds

can be calculated for di↵erent values of � by finding the solutions to the inequalities. For

example, �(G)  2671n
7766 when � = 5, and �(G)  1702n

5389 when � = 6. Currently, Bound

(3.4) is the best upper bound for � � 51, while [24] provides the best upper bound for

6  �  50. The best upper bound for � = 5 is n

3 [23]. And the best upper bound for

1  �  4 is

�(G)  �n

3� � 1
, (3.5)

which is a generalized equation of several works. Ore [102] proved it for graphs with

� = 1, Blank [14], McCuaig and Shepherd [92] have independently proved that it holds

for all graphs with � = 2 and n � 8. For graphs with n < 8, there are seven exceptions

(e.g. C4, a cycle graph with 4 vertices). Moreover, the results for � = 3, 4, 5, 6 are

separately proved in [72, 108, 113, 123] by carefully choosing a dominating set based on

the vertex disjoint paths cover (a set of disjoint paths that covers all G’s vertices) with

specific properties. Note that [63] conjectured that Bound (3.5) holds for all � � 1, but

for any � � 5, Bound (3.4) and the results from [24] are already better than it.

The upper bounds can be further reduced for some special graph classes. Some re-

searchers have considered graphs without certain types of cycle. For connected C4-free

graph with � � 1, Brigham and Dutton [21] proved an upper bound of 1
2(n � �(��1)

2 ).

Küpper and Volkmann [85] have improved it to 3
7(n � (3�+1)(��2)

6 ) for the same graph

class with � � 2. In 2009, Harant and Rautenbach showed that if the graph G does
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not contain cycles of length 4, 5, 7, 10, or 13, then a 3n
8 upper bound can be obtained

for any � � 2 (as for general graph, this upper bound is obtained for � � 3). Simi-

larly, improved upper bounds can be established for regular graphs. For cubic graphs,

Kostochka and Stodolsky [83] have proved a 4n
11 upper bound for any connected cubic

(i.e. � = � = 3) graph with n > 8. The same upper bound has been proven for quartic

graph (i.e. � = � = 4) in [89].

3.1.2.2 Lower Bounds of Domination Number

Only a few results have been obtained on the lower bound side. It is known that in any

graph,

n

�+ 1
 �(G) , (3.6)

where � is the maximum vertex degree of G [20].

Similarly, the lower bound can be improved in certain graph classes. For example, Meier-

ling and Volkmann [95] and Lemańska [86] have independently proved that n�|L|+2
3 

�(T ) for any tree T with n � 3, where |L| is the number of T ’s leaves. This bound is

sharp as the equality can be found in any paths with multiple-of-3 number of vertices.

3.1.2.3 Approximating the Domination Number

Instead of obtaining an upper bound and a lower bound for the domination number,

another line of research has been focused on approximating the actual domination num-

ber.

Give a graph G, the distance between two vertices, u and v, is the number of edges on

the shortest path from u to v (excluding u and v). For example, if u and v are adjacent

(i.e., share a common edge), the distance between them is 1. The k-distance independent

set of G is a set of G’s vertices such that no two of them are at distance less or equal

than k. The maximum cardinality of G’s k-distance independent set is referred as the

k-distance independence number. It is not hard to see that the 2-distance independence

number is a lower bound for the domination number in any graphs, as in 2-distance
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independent set, every vertex must adjacent to at most one vertex from the set. Böhme

and Mohar [16] proved that domination number is also constantly upper bounded by the

size maximum 2-distance independent set in graphs excluded proper complete bipartite

graph minors. For example, in planar graphs, the size maximum 2-distance independent

set is a 20 approximation of the size of the minimum dominating set. Dvořák [45]

extended this result to a linear-time constant-approximation algorithm for graphs with

bounded expansion. However, note that in graphs with arboricity ↵, the ratio between

domination number and 2-distance independence number could be as large as O(n).

Consider the incidence graph of a complete graph Kn, which is a bipartite graph with

V (Kn) and E(Kn) as two parts of the graph. And there is an edge between u 2 V (Kn)

and e 2 E(Kn) if u 2 e in Kn. Moreover, there is an additional vertex w, such that

w is adjacent to every vertex in E(Kn). According to Dvořák (Lemma 5, [46]), this

graph has domination number at least n

2 , 2-distance independence number at most 2,

and arboricity at most 3.

When giving query access to the adjacency list of each vertex, constant-time approxima-

tion algorithms for the domination number has been explored in many studies. Parnas

and Ron [104] and Nguyen and Onak [100] provided algorithms that achieve O(log�)

approximation for graphs with bounded degree � and O(log d̄/✏) approximation for

graphs with average degree d̄, both approximations have additive error of ✏n. Moreover,

Hassidim et al. [61] have improved it to (1±✏n) approximation for graphs with maximum

degree of �.

3.1.2.4 Bounds of Connected Domination Number

Since only connected graphs (graphs without isolated vertices) can have valid connected

and total dominating set, the results in this section are all obtained for connected graphs.

Determining the connected domination number for arbitrary graphs is also NP-complete

[54], which holds for even planar graph and quartic graph. Sampathkumar and Walikar

[110] state that n

�+1  �C(G)  2m � n, and �C(G)  2n � 2 for n � 3. In 1984, an

upper bound of n �� has been established [64]. Moreover, the same paper has shown

that for graphs with n > 2, �C(G) + l(G) = n [64], where l(G) is the maximum leaf

number of G (the largest number of leaves in any of G’s spanning trees). So that for

any tree T , �C(T ) = n � |L|, where |L| is the number of T ’s leaves. Furthermore, by
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combining with l(G)’s lower bound (n�3b n

�+1c+2) [82], an upper bound of (3b n

�+1c�2)

can be obtained [63].

Moreover, the relationship between �C(G) and �(G) has been studied in much research.

It is known that �C(G)  3�(G)� 2 [44].

3.2 Streaming Dominating Set

Fafianie and Kratsch [51] studied the streaming kernelization of a variant of dominating

set, k-edge dominating set, where we are seeking a set of edges of size at most k that

dominate the rest of other edges. In streaming kernelization, instead of computing the

solution, the algorithm gave a equivalent and space-reduced instance called kernel that

has the exact same answer. They showed a two-pass deterministic algorithm that uses

O(k3 log n) bit of local memory and outputs a O(k3 log k)-space kernel in insertion-only

arbitrary-ordering edge-arrival model. In short, their algorithm computes a kernel for

the 2k-vertex cover problem in the first pass, and in the second pass, it includes edges

between vertices that are kept during the first pass.

The dominating set problem is closely related to the set cover problem because of the

interchangeability between them. For instance, given a graph G, we can construct a

set of sets by letting each set represent a vertex and its neighbours in G. Clearly, a

subset of G’s vertices is a dominating set if and only if their corresponding sets is a set

cover. Alternatively, give a set of sets, we can build a graph by creating a vertex for

each set and a vertex for each element 1. Two vertices share an edge if they are both

indicating some sets, or one of them is indicating a set and the other one is indicating

an element in that set. One can show that a subset of sets is a set cover if and only if

their corresponding vertices (note: here only the vertices indicating sets are considered)

form a dominating set.

Therefore, as indicated by the results from the minimum set cover problem [5], any

randomized streaming algorithms that ↵ approximates the minimum dominating set

problem on general graphs must use ⌦̃(n
2

↵2 ) bits, where ↵ = o(
q

n

logn) and ⌦̃ suppress

the log factors. Similarly, Banerjee and Bhore [9] have studied the generalization of DS,

k-tuple dominating set, and a variant of DS, the Liar’s dominating set. They showed

1
Here we assume that the set number universe and set element universe are disjoint



Chapter 3 Further Related Works 35

a ⌦(n2) lower bound for both problems in graph streams. Recently, by reduction from

the INDEX problem, Chitnis and Cormode [31] showed that ⌦(n2) space is required to

answer the one-pass streaming k-dominating set problem for even k = 3. In addition,

for edge dominating set, perhaps surprisingly, Fafianie and Kratsch [51] also proved

that for graphs with m edges, ⌦(m) space is required for any single-pass deterministic

kernelization algorithm in the same model. To illustrate, consider k = 1 and an graph

G that has a star of m� 1 edges and one extra edge incident on one of the star leaves.

Trivially there is an edge dominating set of size 1 and we expected the kernel to have

the same size. The adversarial stream shows all edges of star first and then the extra

edge. So that when the last edge arrives, the algorithm must be able to decide whether

one of its vertex has appeared in the previously shown star or not, hence according

to the famous set reconciliation problem, ⌦(m) space is required. This lower bound is

generalized to ⌦(n) for any randomized algorithm in [33] with similar proof technique.

3.3 Independent Set

In this section, similar to Section 3.1, we firstly introduce other research in computing

the maximum independent set or the independence number. Then, we cover additional

relevant studies under the streaming model.

3.3.1 Approximating the Independent Set

In sparse graphs, one can also obtain a approximation ratio of O(d) without the help

of semi-definite programming. Hochbaum [66] gave a LP-based algorithm that outputs

an independent set with approximation ratio d+1
2 using O(dn3/2) time. The algorithm

relies on the LP program of the fractional vertex cover problem introduced in [99], where

each node could be assigned with value 0, 1/2, or 1. Based on the LP solution, the graph

nodes can be partitioned into three subsets R (vertices with solution value 0), Q (vertices

with solution value 1/2), and P (vertices with solution value 1). Note that at least one

of the maximum independent set in the original graph contain all vertices in R and none

of the vertices in P . And for the subgraph induced by Q, �(Q)/nQ is at most 1/2.

Halldórsson and Radhakrishnan [58] further combined this technique with the greedy

algorithm above, and improved the approximation ratio to 2d+3
5 .
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Furthermore, in even more restricted graphs or graphs that exclude certain minors,

one can compute the MIS exactly. For example, there is a polynomial-time algorithm

for finding the MIS in claw-free graphs [101], P5-free graphs [90], interval graphs 2,

and bipartite graphs. For interval graphs, the independent set problem is also known

as the Interval Scheduling problem, and it can be solved using the earliest deadline

first scheduling algorithm, which iteratively picks the interval that has the earliest end

time. For bipartite graphs, as implied by König’s theorem, we could use the well-known

bipartite matching algorithm to compute a maximum independent set. And for chordal

graphs 3, one can find the MIS in just linear time [53].

3.3.2 Computing the Independent Number

3.3.2.1 Upper bounds of Independence Number

For a general graph, its independence number can be upper bounded by its maximum and

minimum degree. Given the maximum degree �, it is not hard to show that �  n� m

�

[119]. For every independent set I, there is no edges in the subgraph induced by I, hence

for every edge, at least one of its end must be in V (G)\I. Since the degree of each vertex

is at most � and there are at most n� � vertices in V (G) \ I, we have m  �(n� �).

Rearranging the terms, we have the inequality.

Alternatively, there is a trivial bound of � using the minimum degree, �  n� �. This

can be shown by considering any vertices in the independent set, it must have at least

� neighbours that can not be included into the set, hence the inequality holds.

3.3.2.2 Lower bounds of Independence Number

In terms of the lower bound on the independence number, Harant and Schiermeyer have

shown that for any graphs, the size of every solution outputted by the simple greedy

algorithm is at least
(2m+n+1)�

p
(2m+n+1)2�4n2

2 . Also, it is not hard to see that the

inverse of the chromatic number (�) is no greater than the independence number. The

chromatic number is the smallest number of colors required to color each vertex in the

2
But in the two-dimensional geometric settings, it is NP-hard to find a MIS

3
A graph is a chordal graph if every induced cycle contains exactly 3 vertices. A cycle is a induced

cycle if it is a cycle and no non-adjacent vertices in this cycle shares a common edge
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graph, such that no adjacent vertices have the same color. Clearly, all vertices that

have the same color form a independent set, as none of them shares an edge. By the

Pigeonhole Principle, at least one of the color contains at least 1/� vertices.

The lower bound can be further improved with the knowledge of vertex degree, Turán

[115] showed that for any graph

� � n

1 + d
, (3.7)

which is also known as the Turán bound. As a result of the Turán Bound, we could

bound the independence number by the maximum degree as � � n

1+� , since � � d.

However, this bound is always no better than the Turán Bound. The solution of the

greedy algorithm that iteratively adds the minimum-degree vertex is shown to have size

at least of the Turán Bound. And indeed this greedy algorithm is an elegant proof of

the Turán Bound.

Caro [29] and Wei [118] have independently demonstrated that

� �
X

v2V (G)

1

1 + d(v)
(3.8)

which is also known as the Caro-Wei Bound. Clearly, the Caro-Wei Bound is better than

the Turán Bound as it is always no less than the Turán Bound (see [17] for a simple

proof). We could prove the Caro-Wei bound as follows. Consider a random permutation

of G’s vertices, and add a vertex v in S if there is no edges between it and the vertices

after it (i.e. it appears at the last in N [v]). By construction, S is a valid independent set

with expected size
P

v2V (G)
1

1+d(v) , as each vertex is included with probability d(v)!
(d(v)+1)! =

1
1+d(v) . Hence, the maximum independent set is at least of this expected size. Indeed

one can translate the proof into simple approximation algorithms for the independent

set. For example, we could randomly permute the vertices, and output the set of vertices

that precede all of their neighbours as the solution. Alternatively, we could randomly

assign weights to each vertex, and include a vertex into the solution if it has the smallest

weight among it and all of its neighbours. By design, both result sets are independent,

and their expected size is exactly the value of Caro-Wei Bound. In fact, Caro and Tuza

have demonstrated that even for large classes of hyper-graphs, the Caro-Wei bound is
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the strongest lower bound that can be obtained from the degree information alone [30].

And currently, we do not know if there is an asymptotically better lower bound on

general graphs.

Meanwhile, Boppana et al. [17] have demonstrated that in sparse graph with average de-

gree d, the performance ratio of Caro-Wei bound is at most d+2
1.657 , which is approximately

1.207(↵+1) in graphs with arboricity ↵, and 4.828 in planar graphs. And for graphs with

maximum degree �, the Caro-Wei Bound can approximate the independence number

with a ratio of �+1
2 .

For sparse graph, finer lower bounds can be obtained. For example, it is well known

that in trees with n � 2, � � n

2 . This is because every tree is also bipartite, and by the

property of bipartite graph, each side of the bipartite graph itself is a valid independent

set. Also, By the Pigeonhole Principle, one of its sides must have size at least n

2 , thus

� � n

2 . Moreover, for planar graphs, we have � � n

4 . This is implied by the Four-Color

Theorem as every planar graph is four-colorable. So that the set of vertices with the

same color forms a independent set, and again by the Pigeonhole Principle, one of the

color must have size at least n

4 .

3.4 Streaming Independent Set

Halldórsson et al. [59] designed a simple sampling-based algorithm that can c-approximate

the maximum independent set using Õ(n
2

c2
) space, where Õ suppresses the logarithm fac-

tors. Their algorithm samples n

c
vertices and maintains the subgraph induced by them.

By running the o✏ine maximum independent set algorithm (in exponential time) on the

induced subgraph, we could achieve an approximation ratio of c. Cormode et al. [40]

also showed that in vertex-arrival stream with very large average degree, there exist an

algorithm that (log n)-approximates the Caro-Wei Bound using O(log3 n) space.

We also remark there is another line of works have studied the independent set problem

in other special graph classes, such as the interval graphs and geometric graphs [8, 27, 48].

In terms of other lower bounds, Cormode et al. [41] have studied the hardness of the

streaming independent set problem on general graphs in di↵erent stream models. By
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reduction from the classic INDEX problem, they showed that for every one-pass algo-

rithm, ⌦(n2) space is required for finding even a maximal independent set. Moreover,

this problem does not become easier we relaxed to approximated solution or even par-

tial solution. Halldórsson et al. [59] showed a ⌦( n
2

c2 log2 n
) space lower bound for every

algorithm that c-approximates the maximum independent set problem, which matches

(up to logarithmic factors) the Õ(n
2

c2
)-space upper bound algorithm they provided in

the same work (see above). Also if c 2 o(log n), the lower bound can be improved to

⌦(n
2

c4
). For small values of m, Braverman et al. [19] showed that ⌦(m

c2
) space is required

to c-approximate the MIS. And by reduction from a graph-based variant of the INDEX

problem, Cormode et al. [41] showed a n
2�o(1) space lower bound for finding an inde-

pendent set that covers only n � n
1�✏ vertices for every ✏ > 0. And if we relaxed the

covering condition to a constant fraction of n, the space lower bound is n
1+⌦( 1

log logn ).

As for the vertex-arrival stream, Braverman et al. [19] has proved a ⌦( n

c2
) space lower

bound for c approximations, and their result is built on a even more relaxed streaming

model, where each vertex is arrived with all of its neighbours rather than only the neigh-

bours who have appeared before. This lower bound is further improved by Cormode

et al. [41]. They showed by reduction from a multiparty generalization of the INDEX

problem, that every one-pass algorithm that c-approximates the maximum independent

set would require ⌦(n
2

c7
) space.
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Streaming Dominating Set

In this chapter, we introduce our results on domination number in streamed trees and

forests. A graph is a tree if it is connected and contains no cycles, and is a forest if it

consists of one or more disjoint trees. Previous results showed that the tree domination

number can be 3-approximated using just the number of non-leaf vertices [47, 84, 86, 95].

To begin with, in Section 4.1, we prove that this approximation ratio can be further

improved to 2 and applied to forests by knowing the number of support vertices. Recall

that a vertex is a support vertex if it is adjacent to at least one leaves. Moreover, we

show that the tree connected domination number, is exactly the number of non-leaf

vertices.

Later in Section 4.2, we present our streaming algorithm that (1 ± ✏)-approximate the

number of non-leaf vertices using one pass and polylog(n) space, as well as our streaming

algorithm that (1 ± ✏)-approximate the number of support vertices in two passes and

Õ(
p
n) space. Hence, the tree connected domination number can be (1±✏)-approximated

in one pass and polylog(n) space. And the forest domination number can be 2(1 ± ✏)-

approximated in two passes and Õ(
p
n) space.

4.1 Tree Approximation

Let �(G) be the domination number of graph G, H2 be the set of non-leaf vertices,

and S be the set of support vertices. In this section, we prove that |H2|+|S|

2 gives a

40
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2-approximation of the domination number, �(G). To begin with, in Section 4.1.1, we

briefly review previous result that gives a 3-approximation of �(G) in trees with order

n � 3. And then in Section 4.1.1, we prove the upper bound and the lower bound of our

estimate, respectively. Our estimate not only have a better approximation ratio, but

also can be applied to trees with n � 2, hence it can be generalized to forest without

isolated vertices.

4.1.1 3-approximation of Domination Number

Previous works showed that

Theorem 4.1. [47, 84, 86, 95] For every tree with n � 3, |H2|

3  �(G)  |H2|.

Therefore, for every tree with n � 3, |H2| gives a 3-approximation of the domination

number. Here we cannot remove the constraints on order, i.e., n � 3. This is because

trees with 2 vertices is a essentially path of length 2, which contains no non-leaf vertices

but has a domination number of 1. The upper bound of Theorem 4.1, �(G)  |H2|, can

be easily proved via showing H2 itself is always a dominating set. And the lower bound

of Theorem 4.1, |H2|

3  �(G), can be proved via induction on the order.

We also remark that Meierling and Volkmann [95] as well as Lemańska [86] have es-

tablished a higher lower bound, |H2|+2
3  �(T ). But for the sake of our approximation

algorithm, the |H2|

3 lower bound is su�cient.

4.1.2 2-approximation of Domination Number

In this section, we show that the tree approximation ratio above can be improved to 2

by introducing the number of support vertices. Moreover, our estimate holds for every

tree with order n � 2, thus it can be generalized to every forest without isolated vertices.

Before showing the bounds, we first prove the following lemma on every connected graph

with n > 2.

Lemma 4.2. For every connected graph with n > 2, there exists at least one minimum

dominating set that contains all support vertices and no leaves.



Chapter 4 Streaming Dominating Set 42

Proof. We prove this by showing that given any minimum dominating set, we could

always adjust it to make it contain no leaves and all support vertices without increasing

its size.

Firstly, it is clear that in every connected graph with n > 2, all support vertices have

degree greater than 1 (i.e., are not themselves leaves). This is because if a vertex v is a

support vertex, by the definition of support vertex, it must adjacent to at least one leaf.

If v is also a leaf, then it must have at most one neighbour. Hence, combining these two

claims, v must be adjacent to one and only one leaf. Then, graph G must contain only

two vertices, v and its leaf neighbour, contradicting our assumption that n > 2.

Now assume we are given a minimum dominating set. If the dominating set contains

no leaves and all support vertices, then nothing needs to be done. If not, then we could

always remove the leaves from the dominating set and add their neighbours into the

dominating set. Note that by our definition of support vertices, the neighbours of leaves

must be also support vertices. First of all, the resulting set is still a dominating set as

newly added support vertices dominate the removed leaves and themselves. Moreover,

the dominating set must contain all support vertices, otherwise at least one leaf is

undominated. Lastly, the size of the new dominating set is no larger than the original

dominating set, because each removed leaf can introduce at most one neighbour (i.e.,

support vertex) into the new set.

Now we give an upper bound and a lower bound on the domination number of a tree or

a forest (the upper bound actually can be applied for any connected graphs of size at

least 2). Both bounds are (nearly) sharp and are expressed in terms of the number of

non-leaf vertices (|H2|) and the number of support vertices (|S|).

Lemma 4.3. For every connected graph G,

|H2|+ |S|
2

� �(G) (4.1)

Proof. Firstly, consider a graph with order exactly 2: since there is no isolated vertex,

it must be a path of length 2, P2. Each of the two vertices in P2 is both a support
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p1 p2 � pr

l1 l2 �1 lr

· · ·

· · ·

Figure 4.1: Sharp example of our upper bound on tree domination number

vertex and a leaf and we could pick either of them as the dominating set. Hence,

|H2|+|S|

2 = 1 = �(G), the inequality holds.

Next we prove the inequality for graphs with n > 2. It is known that if a graph G is split

into k disjoint subgraphs, G1, G2, . . . , Gk, we have �(G)  �(G1) + �(G2) + · · ·+ �(Gk).

This is because connecting two or more disjoint graphs only introduces new edges, thus

vertices do not become undominated. Rewrite the inequality as |S| + |H2|�|S|

2 , the first

term could be viewed as adding all vertices in |S| to the dominating set. By doing so, all

of the vertices in N [S] (including all leaves) are dominated. The second term could be

viewed as an upper bound on the domination number after removing all S and leaves.

Clearly, the remaining graph is a forest with (|H2| � |S|) vertices. Thus it remains to

prove that in such a forest, there exists a dominating set of size at most |H2|�|S|

2 .

Note that all isolated vertices in the induced graph are already dominated by some

vertices in S, because a vertex becomes isolated only if all of its neighbors are in S.

Thus, we only need to show that for each tree components (of size k > 1) in the

remaining forest, there exists a dominating set of size at most k

2 . Ore [102] proved that

for every graph G with order n and no isolated vertices, �(G) � n

2 . Hence, this lemma

follows.

Moreover, this upper bound is sharp. An example would be P2 as shown in the proof.

An example of arbitrary size is illustrated by Figure 4.1. Given a path of arbitrary

length, r, the graph in Figure 4.1 is constructed by adding a leaf to every vertex on the

path. Clearly, we have |S| = |H2| = � = r.

Lemma 4.3 gives an upper bound of the domination number in every connected graph,

thus it also holds for every tree with n � 2. In order to show that |H2|+|S|

2 is a 2-

approximation of the tree domination number, it remains to show that the domination
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number is also lower bounded by |H2|+|S|

4 . Hence, we present our lower bound result as

follows.

Lemma 4.4. For every tree T with n � 2,

�(T ) � |H2|+ |S|
4

(4.2)

Proof. We prove it by induction on the number of nodes. We consider the base case as

a tree with n  4, which can be easily verified by hand.

Therefore it remains to prove the induction. To begin with, denote two or more leaves as

twins if they share a common parent node (i.e., a support vertex). We claim that, if the

tree contains twins, then we are done by induction. To illustrate, consider removing any

one of the twins from the tree. By Lemma 4.2, there exists one minimum dominating

set that does not contain any leaves, and removing one of the twins certainly does

not remove any node in this minimum dominating set. Hence, after the removal, the

domination number �, the number of non-leaf vertices |H2|, and the number of support

vertices |S| stay the same. Therefore, by induction hypothesis, Lemma 4.4 holds.

Hence, we assume there are no twins and consider the longest path, P , in the tree. As

shown in the graph below, denote the two endpoints as x and x
0 respectively, let y be

the “parent” of x, w be the “parent” of y, and z be the “parent” of w.

We argue that the length of P must be greater than 4, thus z and x
0 must be two di↵erent

vertices. This can be seen via contradiction. Assuming P has length 4, then z and x
0

are denoting the same vertex. Since P is the longest path, x and z (or equivalently,

x
0) must be leaves, and the neighbours of y and w must be leaves. Otherwise, if x or z

is not leaf, or there is a path of length two incident on y or w, P is not longest path,

violating our choice of the longest path. If y or w have leaf neighbours other than x and

z, then there exist twins in the graph, violating our assumption of no twins. If x is the

only leaf adjacent to y, and z is the only leaf adjacent to w, then this graph has order

4 and should be considered as the base case. Similar arguments can be obtained for P

with length smaller than 4. Hence, P ’s length must be greater than 4.

x y w z � x
0· · ·
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We claim that if w has a leaf incident on it (i.e., w is a support vertex), then we are done

by induction. Note that by Lemma 4.2, assuming the optimal dominating set contains

both w and y as they are support vertices. Note that y must have degree exactly 2,

otherwise the graph has either a twin, or a path longer than the path from x to x
0

(violating our choice of the longest path). Hence, deleting x, y becomes a leaf which

is already dominated by w. Therefore, after removing x, the optimal dominating set

size goes down by one. Since y becomes a leaf, both H2 and S decrease by one, the

inequality holds by our induction hypothesis.

Hence it remains to show that �(T ) � |H2(T )|+|S|

4 when there are no twins and w is

not a support vertex. Let T 0 and T
00 be the two sub-trees formed by deleting the edge

(w, z), such that T 0 contains w and T
00 contains z. Note that by our previous analysis,

only paths of length exactly 2 can be incident on w, otherwise the tree falls into the

previous cases. Denote the number of such paths as r; clearly, r � 1 because there is

path from x to w. In tree T
0, it is clear that by picking all r child nodes of w, we can

obtain a optimal dominating set. Since w is not included in the optimal dominating set,

�(T ) = �(T 0)+�(T 00) = r+�(T 00). Let  (T ) = |H2(T )|+ |S(T )|. We have the following

three inequalities:

1a.H2(T )  H2(T 00) + (r + 1) (if z has degree greater than 1 in T
00)

1b.H2(T )  H2(T 00) + (r + 1) + 1 (if z has degree 1 in T
00)

2. S(T )  S(T 00) + r

Inequality 1a and 1b hold because tree T
0 contains r vertices that are in H2(T 0), and

by adding the edge between w and z, w must have degree at least 2. Also, if z has

degree 1 in T
00, z is not in H2(T 00), adding an edge between z and w increases z’s degree

by one, hence it is in H2(T ), otherwise, z is already in H2(T 00). Similarly, inequality

2 holds because there are r vertices in S(T 0), adding an edge between w and z does

not introduce new support vertices in S(T ). Hence, S(T )  S(T 00) + r. This is an

inequality because adding the edge (w, z) makes z non-leaf, thus a support vertex might

be removed. Therefore, we have  (T )   (T 00) + 2r + 2. Therefore:
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Figure 4.2: Tight example of our lower bound on tree domination number

�(T ) = �(T 00) + r

� |H2(T 00)|+ |S(T 00)|
4

+ r [by induction hypothesis]

=
|H2(T 00)|+ |S(T 00)|+ 4r

4

� |H2(T )|+ |S(T )|
4

(4.3)

where the last inequality holds because 4r � 2r + 2 when r � 1, which is always true

since there is a path from w to x.

The lower bound introduced by Lemma 4.4 is asymptotically tight. Consider the graph

shown in Figure 4.2. This graph contains a vertex v with one leaf and r paths of length

4 (P4) incident on it, which can be also viewed as a star graph with r + 1 leaves except

r of them are replaced with P4. Clearly, by Lemma 4.2, the domination number of this

graph is r+1, as there are r+1 support vertices and the set of them dominates all other

vertices. Meanwhile, by construction, we have 3r+1 vertices of degree two or more, and

|S| = r + 1. Hence,

|H2|+ |S|
4

=
4r + 2

4
⇡ r +

1

2
. (4.4)

When r ! 1, r+1
r+ 1

2

! 1. Hence, this lower bound is asymptotically tight.

In addition, Lemma 4.4 can be generalized to forest as follows.

Lemma 4.5. For every forest F without isolated vertices,

�(F ) � |H2|+ |S|
4

(4.5)
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.

Proof. The proof is fairly straight forward, as each component of the forest is itself a tree

(of size at least 2) and there are no shared edges between them. Hence we know that

|H2(F )| and |S(F )| are equal to the sum of |H2(T )| and |S(T )| for all T 2 F . Moreover,

�(F ) is equal to sum of �(T ) for all T 2 F . Therefore the lemma follows.

Combining Lemma 4.3 and 4.5, we have the following theorem:

Theorem 4.6. For every forest F without isolated vertices, we have:

|H2|+ |S|
4

 �(F )  |H2|+ |S|
2

. (4.6)

Therefore, |H2|+|S|

2 gives a 2 approximation of the forest domination number.

Moreover, combining the result of Theorem 4.6 and Theorem 4.1, we know that when

3|S| < |H2|, the following inequality holds for forests without isolated vertices.

|H2|+ |S|
4

 |H2|
3

 �(F )  |H2|+ |S|
2

 2|H2|
3

. (4.7)

Although Theorem 4.1 does not generalize to a forest, it is okay here because we only

used its lower bound side (i.e., |H2|

3  �(F )). Note that this lower bound also holds for

trees with order n � 2. And it su�ces to just prove it for trees with order 2, as trees with

order greater than 2 is proved in Theorem 4.1. A tree with order 2 is just a path of length

two, which has no H2 vertices but a domination number of 1. Thus, the lower bound

holds. Since having multiple disjoint trees increases neither the domination number nor

the number of non-leaf vertices, the lower bound can be generalized to forests without

isolated vertices. Therefore, we have the following corollary.

Corollary 4.7. For every forest F without isolated vertices, when 3|S| < |H2|, we have

|H2|
3

 �(F )  2|H2|
3

(4.8)
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4.1.3 Exact Estimate of Connected Domination Number

Recall that a dominating set is a connected dominating set if the subgraph induced by it

is connected, and we use �C to denote the connected domination number, the cardinality

of the minimum connected dominating set (MCDS ). Let T be a tree containing n � 2

vertices, we show that

Theorem 4.8. For every tree T with n � 2, �C(T ) = max{1, |H2|}.

Proof. When n = 2, there is a minimum connected dominating set of size one and

|H2| = 0, the equality holds.

For n > 2, since T is a tree, then |H2| � 1, hence it su�ces to prove that MCDS = H2.

By Lemma 4.2, we can assume there are no leaves in the MCDS, then we can prove

this theorem via contradiction. Suppose there exists a vertex v 2 H2 and v /2 MCDS.

Firstly, we claim that v can not be a support vertex, otherwise its leaf is undominated,

a contradiction. Moreover, if v is not a support vertex, then it must have at least two

neighbours in H2. This is because if it has a leaf neighbour, it must be a support

vertex. If it only has one neighbour in H2 and no leaf neighbours, then it must be a

leaf. Consider removing v from the tree, the tree is divided into two parts, T 0 and T
00.

By the property of tree, every pair of vertices (x, y) such that x 2 T
0 and y 2 T

00 are

disconnected, otherwise there is a cycle in the tree. Note that T 0 and T
00 must have at

least one vertex in the dominating set, respectively. The dominating set in T
0 and the

dominating set in T
00 are disconnected because v is not in the dominating set. Thus, a

contradiction.

Note this can not be generalized to a forest without isolated vertices, as some components

might be P2.

4.2 Tree Streaming Algorithms

First note that |Deg1| and |H2| could be small (i.e., in o(n)), making the simple sampling

plus counting technique infeasible here. Take the number of leaves as an example,
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assuming its actual count is O(k), one common technique is to sample ⌦( n

✏2k
) vertices

beforehand. Then use one pass to count the number of leaves in the the sampled vertices,

and return the estimate as the count number divided by the sampling probability. One

can show that the returned result is unbiaed and within ✏ factor of the actual number

with constant probability. However, k can be as small as a constant, hence the space

usage becomes ⌦( n

✏2
). We show that by utilizing existing algorithms that calculate Lp

norms of a vector, |H2| and |Deg1| can be estimated in a one-pass turnstile stream using

only polylog(n) space.

4.2.1 Estimating the Number of Non-leaf Vertices

By estimating the L0 norm of the node degree vector, we can estimate |H2|. A degree

vector of a graph, {v1, . . . , vn}, is a vector with n entries, one for each vertex, and each

coordinate value is the degree of that vertex. A graph arriving via the turnstile streaming

model can be easily converted to its degree-vector representation. For an edge-arrival

stream, we start with v = {0}n, and for each edge arrival, (i, j), we increment the two

corresponding entries, vi and vj , by one if it is a insertion, otherwise we decrement

each by one. Similarly, for vertex-arrival stream, we increment (or decrement) the

corresponding coordinate whenever we see a vertex appeared as the neighbour of the

newly arrived vertex.

In order to estimate |H2|, we need to consider the number of coordinates that have

degree greater than 1. Note that by changing the initialized entries of the vector to

�1, i.e., v = {�1}n, at each point in the stream, the value of each entry is equal to its

degree in the graph minus 1. Since, by assumption, there are no isolated vertices, hence

in the new vector, leaves have coordinate value of 0, and non-leaf vertices have positive

coordinate values. As |L0| represents the number of non-zero coordinates, an algorithm

that (1± ✏)-approximates |L0| gives an (1± ✏) approximation for |H2|.

However, none of the existing |L0| sketches support the operation “initialize the vector

with {�1}n”. Hence, we can postpone the degree decrements to a post-processing step.

That is, initializing the |L0| sketch, feeding the stream to the sketch, and decrementing 1

for all vertices. Recall that we can (1±✏) estimate |L0| inO(✏�2 log(n)(log(1/✏) + log log(mM)))

space and O(1) update/report time [77]. As the algorithm succeeds with constant prob-

ability, we can further boost the success probability to 1 � � by running O(log(��1))



Chapter 4 Streaming Dominating Set 50

independent instances simultaneously and taking the median as the output. To illus-

trate, assuming the algorithm succeed with probability 1
c
for some constants c, and the

boosting algorithm runs c ln(��1) independent instances concurrently. The boosting al-

gorithm returns the median result, hence it fails if at least half of the instances fail.

Since instances are running independently, the fail probability is at most

(1� 1

c
)c ln(�

�1)  e
�

1
c c ln(�

�1) = e
ln � = � (4.9)

Therefore, we have the following lemma and theorems.

Lemma 4.9. There is a randomized turnstile streaming algorithm that uses O(polylog(n))

space and with probability 1 � �, outputs a (1 ± ✏) approximation of |H2|. The update

and reporting time is O(log ��1).

Theorem 4.10. There is a randomized turnstile streaming algorithm that uses O(polylog(n))

space and with probability 1��, outputs a (3±✏) approximation of the domination number

of a tree. The update and report time is O(log ��1).

Theorem 4.11. There is a randomized turnstile streaming algorithm that uses O(polylog(n))

space and with probability 1� �, outputs a (1± ✏) estimate of the connected domination

number of a tree. The update and report time is O(log ��1).

4.2.2 Estimating the Number of Support Vertices

In this section, we present an algorithm that (1± ✏)-estimates |S| in a turnstile stream

when |S| is no less than a size threshold, K1. This algorithm (Algorithm 1) uses eO( n

✏2K1
)

bits, where eO suppresses the logarithm factor. And then we present an algorithm that

outputs an exact estimate of |S| (as well as |H2|) when |H2| is less than another size

threshold, K2. The space usage of the second algorithm is eO( n

K2
). Both algorithms

assume that the set of vertices is known in advance, and the number of edge deletions

in the stream is bounded by O(n).

4.2.2.1 Two-pass (1± ✏) Approximation

Lemma 4.12. Given a size threshold K1, a constant error term ✏1 2 (0, 1), and a

turnstile stream, when |S| � K1, Subroutine 1 outputs an (1± ✏1) approximation of |S|.
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This algorithm uses eO( n

✏
2
1K1

) space and fails with probability 3e�
c1
3 . Moreover, when

|S| < K1, the probability that the returned estimate is larger than 2K1 is at most 2e�
c1
3 .

Subroutine 1 Estimating |S|
1: Input: a size threshold K1, a large constant c1, and an error term ✏1

2: Initialization: sample c1n

✏
2
1K1

vertices uniformly at random, denote the graph induced

by the sampled vertices as I. For each v 2 V (I), initialize a empty neighbour list
l(v). Set the edge counter m and the size counter t to 0.

3:

4: First Pass:
5: for all e = (u, v) do
6: Increment/Decrement the edge counter m by one
7: if u 2 V (I) then
8: Add/Remove v to/from l(u)
9: Increment/Decrement the size counter t by one

10: Perform the same operation on v

11: Abort if t � 2m
n

c1n

✏
2
1K1

e
c1
3

12:

13: Second Pass:
14: Count the degree of all vertices in V (I) or in l(w) for some w 2 V (I)
15:

16: let C = {u | u 2 V (I) , 9v 2 l(u) s.t. d(v) = 1}
17: return |bS| = |C|⇥ ✏

2
1K1

c1

Proof. Firstly, we claim that, conditional on the algorithm does not abort at line 11,

the candidate set, C, obtained at line 16 contains only vertices from S, and if a vertex

in S is sampled, it is kept in C. This is not hard to see, by performing a second pass,

we can obtain the exact degree of all remaining vertices and their neighbours. So that

a vertex is included in C if there is at least one leaf adjacent to it, which is exactly the

definition of S.

It remains to prove the bounds of this algorithm, conditional on the algorithm does not

abort. For all i 2 V (G), let the binary random variable Xi represent whether a vertex

vi is a support vertex and is sampled in I. Let X =
P

i2G
Xi. Clearly, since vertices are

sampled uniformly with probability p = c1
✏
2
1K1

, we have

E[X] =
X

i2G

E[Xi] =
X

i2G

Pr[vi 2 S \ I] =
X

i2S

Pr[vi 2 I] =
c1 |S|
✏
2
1K1

(4.10)
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Thus by the design of algorithm, E[|bS|] = ✏
2
1K1

c1
⇥E[X] = |S|. Moreover, when |S| � K1,

we have

Pr
⇥
||bS|� |S|| � ✏1|S|

⇤
= Pr

⇥
|X � E[X]| � ✏1E[X]

⇤

 2e�
✏21E[X]

3

 2e�c1/3

(4.11)

where we apply the negatively correlated Cherno↵ bound (Theorem 2.3) in the second-

last inequality, since the Xis are negatively correlated. And the last inequality holds as

|S| � K1.

Next, we show that when |S| < K1, conditional on the algorithm does not abort, the

probability that our returned estimate |bS| is larger than 2K1 is small. Again, we use

the negatively correlated Cherno↵ bound to prove this

Pr
⇥
|bS| > 2K1

⇤
= Pr

⇥
X >

2K1E[X]

|S|
⇤
< Pr

⇥
X > (1 +

K1

|S| )E[X]
⇤

 e
�

K2
1E[X]

3|S|2

 e
�

c1K1
3|S|✏2

 e
�

c1
3✏2

(4.12)

where the first inequality and the last inequality hold because |S| < K1.

Lastly, we bound the space usage of the algorithm and the probability that the algorithm

aborts at line 11. Note that by the design of the algorithm, at most 2m
n

c1n

✏
2
1K1

e
c1
3 vertices

can be stored from the first pass, otherwise it aborts at line 11. The number of total

edge insertions is bounded by O(n), since we assumed that the number of edge deletions

is bounded by O(n), and it is known that the number of edges of a forest is bounded by

O(n). Thus, we have 2m
n

2 O(1). Therefore, since each vertex requires O(log n) bits to

store its identifier, the space usage of the first pass is eO( n

✏
2
1K1

). Moreover, in the second

pass, each degree counter takes an additional O(log n) space to store. Hence, the total

space usage is still eO( n

✏
2
1K1

).

In this algorithm, we sampled c1n

✏
2
1K1

vertices in advance. And the average degree of the

graph at any point of the stream can be calculated as 2m
n
. Hence, if we pick a vertex
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uniformly at random, the expected number of its neighbours is bounded by 2m
n
. Let Yi

be the number of neighbours of vertex i, E[Yi] =
2m
n
. Let Y =

P
v2V (G) Yv We have

E[Y ] =
X

v2V (G)

E[Yv] =
2m

n

c1n

✏
2
1K1

(4.13)

And since we are sampling each vertex uniformly at random, Yvs are independent of

each other. Algorithms aborts if more than 2m
n

c1n

✏
2
1K1

e
c1
3 vertices are retained. By Markov

inequality, the probability that the actual size is e
c1
3 times larger than the expected size

is at most e�
c1
3 .

Applying a union bound with the abort probability and the concentration probabilities

above, we can bound the fail probability of our algorithm as follows. When |S| � K1,

Algorithm 1 outputs an (1±✏)-estimate of |S| and fails with probability at most 2e�
c1
3 +

e
�

c1
3 = 3e�

c1
3 . Similarly, when |S| < K1, the estimate returned by Algorithm 1 is larger

than 2K1 with probability at most e
�

c1
3✏21 + e

�
c1
3 < 2e�

c1
3 since ✏1 < 1.

4.2.2.2 Two-pass Exact Estimate

Consider the degree vector of the graphG, where the value of each coordinate i represents

the degree of vertex i in G. Note that similar to the |H2| approximation, if we decrement

the value of each coordinate by 1, each leaf has coordinate value 0. Hence, the resulting

degree vector is |H2|-sparse, i.e., it has at most |H2| non-zero coordinates. Therefore,

when |H2| is small, we could use this idea and perform a |H2|-sparse recovery to recover

all H2 vertices. Observe that by doing this, no leaf is sampled, and with probability 1��,

all H2 vertices are recovered. Hence, we can assume that vertices that are not sampled

are all leaves. Then using a second pass, we could verify whether a sampled vertex is

a support vertex or not by telling whether all of its neighbours are in the sampled set

or not. However, we have ignored support vertices which are also leaves, which only

happens in the case of P2 (paths of length 2). This is not hard as in P2, both endpoints

are leaves, hence we can tell whether an edge is indeed a P2 by verifying whether both

endpoints are sampled or not. Lastly, it remains to verify whether |H2| is indeed small

(i.e., whether we have successfully recovered all H2 vertices). Since the total degree
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of a graph G is equal to twice its edge count, we can verify this equation by counting

the number of edges, obtaining the degrees of all sampled vertices, and assuming all

the non-sampled vertices have degree one. The detailed description of this algorithm is

summarized in Algorithm 2.

Subroutine 2 Estimating |S| when |H2| is small (|H2|  K2)

1: Input: a size threshold K2 and a large constant c2
2: Initialization: The sparse recovery data structure in [37] with k = K2 and � = 1/c2
3:

4: First Pass:
5: for all e = (u, v), insertion/deletion do
6: Update the sparse recovery structure correspondingly

7:

8: for all i 2 [1 . . . n] do
9: Decrement i by 1 in the sparse recovery structure

10:

11: Denote the result of sparse recovery as H
12: Let P2 counter p = 0 and a edge counter m = 0. For v 2 H, initialize a degree

counter dv = 0 and leaf counter lv = 0
13:

14: Second Pass:
15: for all e = (u, v), insertion/deletion do
16: increment/decrement m by one
17: increment/decrement di by one for both i = u and i = v

18: if u /2 H and v /2 H then
19: increment/decrement p by one

20: if u 2 H and v /2 H then
21: increment/decrement lu by one

22: if v 2 H and u /2 H then
23: increment/decrement lv by one

24:

25: if 2m 6= n� |H|+
P

v2H
dv then

26: Return FAIL
27: else
28: Let |bS| = |{u | u 2 H and l(u) = 1}|+ 2p

29: Let |cH2| = |H|
30: Return |bS| and |cH2|

Lemma 4.13. Given a size threshold K2, a constant c2, and turnstile forest streams,

Subroutine 2 uses two passes and outputs the exact estimates for both |S| and |H2|. The

fail probability is at most 1/c2 when |H2|  K2. The space usage is eO(K2).

Proof. Note that in the first pass, only vertices in H2 are sampled. This is because line

8-9 decreases the frequency of all vertices by one, so each leaf has 0 frequency and by
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the definition of k-sparse recovery, they are not recovered by the sparse recovery data

structure. Moreover, by Theorem 2.8, when |H2|  K2 (i.e., when it is small), the sparse

recovery fails with probability no more than 1/c2.

Since the sparse recovery data structure might output a false positive result. That is, a

k-sparse vector when the original degree vector is not k-sparse. We need to perform a

sanity check at line 25 to ensure that the returned result contains all H2 vertices, rather

than part of them. For this sanity check to work, we prove that the equality holds if

and only if H = H2.

To begin with, we prove that the equality holds if H = H2. This is trivial as for every

graph G, we have the following relationship between its edge count, m, and its total

degree count.

2m =
X

v2V (G)

d(v) = n� |H2|+
X

v2H2

d(v) (4.14)

Therefore, if H = H2, the equality in the sanity check must hold.

Next, we prove that the equality does not hold if H 6= H2. Suppose H 6= H2, that is,

9x 2 H2 s.t. x /2 H, we have

2m� (n� |H|+
X

v2H

d(v)) = n� |H2|+
X

v2H2

d(v)� (n� |H|+
X

v2H

d(v))

=
X

v2H2

d(v)� |H2|�
X

v2H

d(v) + |H|

=
X

v2H2\H

d(v)� |H2|�
X

v2H\H2

d(v) + |H|

=
X

v2H2\H

d(v)� |H2|� |H \H2|+ |H|

=
X

v2H2\H

d(v)� |H2 \H|

> 0

(4.15)

where the second-last equality holds because by our definition of H2, all non-leaf vertices

are inH2, hence vertices inH\H2 are leaves and have degree of 1. And the last inequality
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holds because vertices in H2 have degree at least 2, and H2 \ H 6= ?. Hence, if some

H2 vertices are not sampled, i.e., H2 \H 6= ?, then 2m > n � |H| +
P

v2H
d(v). The

equality in the sanity check must be evaluated to false, the algorithm returns FAIL.

It remains to prove that conditional on all H2 vertices being sampled, both |bS| and |cH2|

are exact estimates of |S| and |H2|. If all H2 vertices are sampled successfully, we can

infer whether a vertex is a leaf or not by testing whether it is in H or not. As indicated

by line 20-23, by counting the number of leaves, lv, for each v 2 H, we could identify all

the support vertices in H. But not all support vertices have degree greater than 1, by

definition we can have support vertices of degree 1 in path of length 2 (P2) and each P2

has two support vertices. Thus, we need to also count the number of P2, p. Fortunately

this is not hard at all, as if an edge arrives with none of its endpoint in H2, this edge

must represent a P2.

Lastly, the space used by Algorithm 2 is eO(K3). In the first pass, the sparse recovery

structure takes eO(K3) space to store. And in the second pass, for each vertex in S, we

introduce two counters that can be both stored in O(log n) bits. Therefore the total

space usage of Algorithm 2 is eO(K3).

4.2.3 Estimating Domination Number

Although |S| can not be (1±✏)-approximated when it is small and |H2| is large, we show

that for domination number approximation, as indicated by Corollary 4.7, |H2| itself is

already a good approximation.

Theorem 4.14. Given an error rate ✏ 2 (0, 1) and a fail rate � 2 (0, 1), as well as

a turnstile stream of a forest, Algorithm 3 uses two passes and outputs a 2(1 ± ✏) ap-

proximation of the domination number with probability 1 � �. The space usage of the

algorithm is eO(
p
n).

Proof. To begin with, as shown in Theorem 4.6 and Corollary 4.7, the maximum of

our two estimates, 2|H2|

3 and |H2|+|S|

2 , is guaranteed to be a 2 approximation of the

domination number �. Thus it su�ces to show that we could approximate both terms

well, or we could approximate the larger term well.
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Algorithm 3 Main Algorithm for Estimating �

1: Input: error rate ✏ and fail rate �
2:

3: Initialization: Set K1 =
p
n, K2 = 12

p
n, c1 = 3 ln(6��1), c2 = �

�1, ✏1 = ✏

4:

5: Run the following algorithms concurrently:
6: 1. Algorithm for estimating |H2| with ✏ and �/2, denote the returned result as |cH2|
7: 2. Subroutine 1 with K1, c1, and ✏1, denote the returned result as |bS|
8: 3. Subroutine 2 with K2 and c2, denote the returned result as |bS|0 and |cH2|0
9:

10: if Subroutine 2 returns FAIL then
11: Return b� = max{2|cH2|

3 ,
|cH2|+|bS|

2 }
12: else
13: Return b� = max{2|cH2|

0

3 ,
|cH2|

0+|bS|0
2 }

When |H2|  K2 = 12
p
n, by Lemma 4.13, Subroutine 2 succeed with probability

1�1/c2 = 1��. Thus, by the design of the algorithm, we return our estimate at line 13.

By Lemma 4.13, conditional on successful returning, Subroutine 2 gives exact estimates

of |H2| and |S|. Hence we have a 2 approximation of the domination number.

When |H2| > 12
p
n, we have two cases to consider. If |S| �

p
n, then the algorithm

might return the estimate of 2|H2|

3 or the estimate of |H2|+|S|

2 . On the one hand, if the

estimate of 2|H2|

3 is returned, by Theorem 4.9, we know that the algorithm on line 6

outputs a (1 ± ✏) estimate of |H2| with probability 1 � �/2. Hence we can obtain a

2(1± ✏) approximation of the domination number.

On the other hand, if the estimate of |H2|+|S|

2 is returned, by Lemma 4.12, Subroutine 1

gives a (1± ✏) estimate of |S| with probability

1� 3e�c1/3 = 1� 3e� ln(6��1) = 1� �

2
(4.16)

Apply a union bound over the algorithms for estimating |S| and |H2|, the probability

of failure is at most �. And the error rate is still 1 ± ✏ as we are summing up the two

terms. Hence, the returned estimate is still a 2(1± ✏) approximation of �.

Lastly, if |S| <
p
n, then by Lemma 4.12, |bS|  2

p
n with probability 1 � 2e�

c1
3 . By

Theorem 4.9, if ✏ < 1/2, then |cH2| � (1 � ✏)|H2| > |H2|/2 with probability 1 � �/2.

Since |H2| > 12
p
n, we can bound the probability of 3|bS|  |cH2| as
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Pr
⇥
3|bS|  |cH2|

⇤
= Pr

⇥
|bS|  2

p
n ^ |cH2| > 6

p
n
⇤

� 1� Pr
⇥
|bS| > 2

p
n
⇤
� Pr

⇥
|cH2|  6

p
n
⇤

� 1� 2e�
c1
3 � �/2

� 1� �

(4.17)

where we apply the union bound in the first inequality. Therefore, with probability at

least 1 � �, the maximum between the two estimates, 2|cH2|

3 and |H2|+|S|

2 , is 2|cH2|

3 . As

shown before, |cH2| is a 1± ✏ estimate of |H2|, hence the returned estimate is a 2(1± ✏)

approximation of � with probability 1� �.

The space usage of Algorithm 3 is the maximum space usage of its three sub-algorithms,

which is eO(
p
n).

4.3 Hardness Results

For graphs with bounded arboricity, Chitnis and Cormode [31] provide a lower bound

on approximating the domination number.

Theorem 4.15. [31] For any � � 1, any randomized streaming algorithm that �

32 -

approximates the domination number on graphs of bounded arboricity �+2 would require

⌦(n) space, i.e., essentially storing the whole graph.

This lower bounds holds for even under the vertex-arrival model.

As for forests without isolated vertices, we can show the space lower bound for streaming

algorithms by reducing from the Boolean Hidden Matching Problem [116] using the same

reduction technique from Hossein et al. [49]. For simplicity, please refer to [116] and [49]

for the definition of Boolean Hidden Matching Problem and the graph construction in

reduction. Elad and Wei [116] showed that

Theorem 4.16. [116] For every randomized protocol for the Boolean Hidden Matching

Problem, if the message length is in o(
p
n), then it fails with probability at least 1

4 on

some input.
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Hence, by the same graph construction from [49], we can show that no randomized

streaming algorithm can approximate the domination number within a factor better

than 3/2 using only o(
p
n) space and have fail probability less than 1

4 .

Theorem 4.17. For every forest without isolated vertices, approximating the domina-

tion number to a factor better than 3/2 with probability at least 3
4 would require ⌦(

p
n)

space.



Chapter 5

Streaming Independent Set

In this chapter, we present our results on the streaming independent set problem. Recall

that the independence number of a graph G is lower-bounded by
P

v2V (G)
1

d(v)+1 , which

is also known as the Caro-Wei Bound. In Section 1.2, we have described a permutation-

based greedy algorithm that outputs an independent set of size the Caro-Wei Bound

in expectation. In Section 5.1, we show that this permutation-based greedy algorithm

can be simulated in edge-arrival insertion-only data streams using a small amount of

space. More specifically, we show that when the maximum degree is no more than

�  ✏
2
n

3 (d + 1)3
, the Caro-Wei Bound can be 1 ± ✏-approximated with probability at

least 1� � using O(d✏�2 log n log ��1) bits. Also, we show that, with little modification,

this algorithm can be applied in the online streaming model with O(log ✏�1) update time

and O(log ✏�1 log n log ��1) working space. Moreover, the maximum degree constraints

can be removed in the edge-arrival algorithm by integrating the heavy hitter algorithm

into the algorithm with an extra post-processing step. Lastly, we show if the stream is

vertex-arrival and random-order, the space can be further reduced.

Next in Section 5.2 and Section 5.3, we present our results on streaming forest indepen-

dent number approximation. Recall that Chitnis and Krauthgamer [84] showed that the

independence number of a tree can be 3/2-approximated using the number of leaves,

but no streaming algorithm is shown to estimate the number of leaves. We show that

by knowing the number of support vertices (vertices adjacent to leaves), we can improve

the approximation ratio from 3/2 to 4/3. We further show the streaming algorithms to

achieve both approximations. The algorithm for the 3/2 approximation uses one pass

60
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and only logarithm space, while the algorithm for the 4/3 approximation uses two passes

and eO(
p
n) space. Both algorithms can be used in edge-arrival turnstile streams with

arbitrary ordering.

Lastly, two existing lower bounds on approximating the independence number are shown.

And we argue that our first result does not violate the known ⌦(d✏�2) lower bound on

approximating the Caro-Wei Bound [40].

5.1 Sparse Graph Streaming Algorithms

In this section, we show our algorithm and its variants on approximating the Caro-Wei

Bound. Let � be the value of the Caro-Wei Bound. Note that all algorithms in this

section are applied to insertion-only model.

5.1.1 An Edge-Arrival Algorithm for Independence Number

With a ✏-min-wise hash family H that maps [n] to [n3] to avoid collisions, our algorithm

and our main theorem are presented as Algorithm 4 and Theorem 5.1. We choose the

output universe of our hash function to be [n3] so that the collision (i.e., vertices with

the same hash value) happens with low probability (i.e., n�c for some constant c). Since

the ✏-min-wise property is achieved via a (log ✏�1)-wise hash family, by the property of

k-wise independence with k � 2, two vertices have the same hash value with probability

at most 1
n3 . Applying an union bound over all pairs of vertices, the probability of having

at least one collision is at most 1/n.

Algorithm 4 Approximating the Caro-Wei Bound

1: Input: the average degree d, an error term ✏

2: Initialization: Randomly select a hash function h 2 H. Let p = 4(d+1)
✏2n

. Sample a
set S of vertices of size pn uniformly at random

3:

4: for all e = (u, v) do
5: if (u 2 S) ^ (h(u) � h(v)) then
6: Remove u from S

7: Perform the same operation on v

8:

9: return b� = |S|/p
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Theorem 5.1. Given the average degree d and an error term 0 < ✏ < 1, Algorithm 4

is an insertion-only algorithm that outputs an (1 ± ✏)-approximation of the Caro-Wei

Bound (�) in graphs with maximum degree �  ✏
2

n

3 (d + 1)3
. It succeed with probability

at least 2/3 and uses space O(d✏�2 log n).

To prove Theorem 5.1, we need to show the expectation of b� is not far away from � and

the probability that b� is too far away from its expectation can be bounded.

Lemma 5.2. E[b�] = (1± ✏)�

Proof. Let binary random variables Xv denote whether vertex v is sampled in S and

not removed from S during the stream. That is, Xv = 1 if v 2 S at the end of the

stream, otherwise Xv = 0. Let X =
P

v2V (G)Xv, clearly, X = |S| at the end. It is not

hard to see that Xv = 1 if and only if v is sampled and v has the smallest hash value

across N [v]. According to the property of ✏-min-wise hash families, v has the smallest

hash value in N [v] with probability 1±✏

|N [v]| . And by the construction of our algorithm,

a vertex v is sampled with probability p. Since these two events are independent, the

probability that Xv = 1 is (1± ✏) p

d(v)+1 . Hence, by the linearity of expectation, we have

E[|S|] = E[X] = E[
X

v2V (G)

Xv] =
X

v2V (G)

E[Xv] = p

X

v2V (G)

1± ✏

d(v) + 1
= (1± ✏) p� (5.1)

Hence, E[b�] = E[ |S|
p
] = (1± ✏)�.

Next, we need to bound the probability that b� is ✏ factor away from its expectation.

We persist with the binary random variables from the proof of Lemma 5.2, that is,

Xv = 1 if v 2 S at the end, otherwise Xv = 0. Note that not all pairs of Xv and Xu

are independent. For all pairs of vertices (e.g., u and v), we have three cases. Firstly,

if u and v are adjacent, then Xv and Xu are strongly negatively correlated. That is,

if one of Xu and Xv is 1, then the other one must be 0, they cannot be both 1. This

is because, since u 2 N [v] and v 2 N [u], if u has the smallest hash value in N [u], we

must have h(u) < h(v), thus it is impossible for v to have the smallest hash value in
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N [v]. Secondly, if u and v are not adjacent but both adjacent to at least one common

vertex (i.e., there are two edges between some paths from u to v), Xv and Xu are

positively correlated. Denote one of the common vertices as w, i.e., w is in N [u]\N [v].

Intuitively, if u has the smallest hash value in N [u], the hash value of w is lower bounded

by h(u), hence h(v) is less than h(w) with higher probability. This positive correlation is

formalized in the upcoming Lemma 5.3. Lastly, if u and v does not fall into the previous

two cases, Xv and Xu are independent. Therefore, we cannot directly apply standard

probabilistic concentration bounds (e.g., Cherno↵ Bound) from Section 2.2 as they all

require independence or negative correlation. However, if the variance of b� is bounded,

we can still bound the error rate via Chebyshev’s inequality (2.11).

Before bounding the variance of b�, we need to firstly formalize the positive correlation

between the Xis. To begin with, we prove the following purely algebraic Lemma 5.3,

which is used in the establish the later positive-correlation proof.

Lemma 5.3. For k � 1,
P

n

i=1
(n�i+k)!
(n�i)! = n(n+1)...(n+k)

(k+1)

Proof. We prove this by induction on n. Consider the base case where n = 1, we have

nX

i=1

(n� i+ k)!

(n� i)!
= k! =

k! (k + 1)

k + 1
=

n(n+ 1) . . . (n+ k)

(k + 1)
(5.2)

Assume the equality holds for n� 1, and we prove it also holds for n.

nX

i=1

(n� i+ k)!

(n� i)!
=

nX

i=2

(n� i+ k)!

(n� i)!
+

(n� 1 + k)!

(n� 1)!

=
n�1X

i=1

(n� 1� i+ k)!

(n� 1� i)!
+

(n� 1 + k)!

(n� 1)!

=
(n� 1)n · · · (n+ k � 1)

(k + 1)
+ n(n+ 1) . . . (n+ k � 1)

=
(n� 1)n · · · (n+ k � 1) + n(n+ 1) · · · (n+ k � 1)(k + 1)

(k + 1)

=
(n� 1 + k + 1)n · · · (n+ k � 1)

(k + 1)

=
n · · · (n+ k)

(k + 1)

(5.3)



Chapter 5 Streaming Independent Set 64

And now we formalize the positive correlations. For a vertex v, we use the notation

v < N(v) to denote the event that v has smaller hash value (or equivalently, smaller

order) among N [v]. We have

Lemma 5.4. Let X and Y be two non-adjacent vertices, where |N(X) \ N(Y )| = k,

|N(X) \N(Y )| = l, and |N(Y ) \N(X)| = r. If the vertices are presented in an uniform

random order, we have

Pr[Y < N(Y ) | X < N(X)] =
(l + r + 2k + 2)

(r + k + 1)(l + k + r + 2)
(5.4)

Proof. Consider n = l+k+ r+2 vertices X,Y , W1, . . . ,Wl, U1, . . . , Uk, and V1, . . . , Vr.

AssumingX comes beforeW1, . . . ,Wl and U1, . . . , Uk, what is the conditional probability

that Y is less than U1, . . . , Uk and V1, . . . , Vr. For simplicity, we use W , U , and V

to represent W1, . . . ,Wl, U1, . . . , Uk, and V1, . . . , Vr. Note that X has degree l + k,

Y has degree k + r, X and Y are not adjacent and they share k neighbours (i.e.,

N(X) = {W [ U} and N(Y ) = {U [ V }).

Since vertices arrive in a random order, it is equivalent to consider it as a random

permutation of the vertex set, and X < N(X) if X comes the first among N [X] in the

permutation. Hence, we could prove the condition probability via counting the number

of permutations that satisfy X < N(X), as well as the number of permutations that

satisfy both the X < N(X) and Y < N(Y ). Clearly, there are n! = (l + k + r + 2)!

permutations in total. Firstly, we calculate the number of permutations S that have X

before W and U . Ignore Y and V , there are (l + k + 1)! di↵erent ordering for X, W ,

and U , and (l + k)! of them start with X. This can be shown by fixing X at front and

consider the permutations inside of W and U . Therefore, (l+k)!
(l+k+1)! =

1
l+k+1 proportion of

permutations satisfy the condition that X < N(X), and there are S = (l+k+r+2)!
l+k+1 such

permutations.

Next, we count the number of permutations which satisfy both conditions, X < N(X)

and Y < N(Y ). To simplify the counting process, we categorize all valid permutations

into the following four cases.

1. X, Y , followed by a mixture of W , V , and U .
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2. Y , X, followed by a mixture of W , V , and U .

3. X, followed by some W , Y , followed by a mixture of the rest of W , V , and U .

4. Y , followed by some V , X, followed by a mixture of W , the rest of V , and U .

For the first two cases, since X and Y are fixed, and there is no constraints inside of

W , V , and U , thus there are (l+ k+ r)! di↵erent orderings. For the third case, one can

generate such sequence by fixing X at beginning, then selecting 1 to k elements from

W , adding Y , and lastly, adding the mixture of the rest of W (if applicable), U , and V .

Assuming the number of W before Y is i, there are
�
l

i

�
choices of W , and for each chosen

subset, there are i! orderings of it, and (l� i+ r+ k)! orderings of the rest of W , U , and

V . Hence, for each i, the number of di↵erent permutations is
P

l

i=1

�
l

i

�
i! (l� i+ r + k)!.

Simplify it, we have

lX

i=1

✓
l

i

◆
i! (l � i+ r + k)! =

lX

i=1

l!

i! (l � i)!
i! (l � i+ r + k)!

= l!
lX

i=1

(l � i+ r + k)!

(l � i)!

= l!
l(l + 1) . . . (l + r + k)

(r + k + 1)

=
l(l + r + k)!

(r + k + 1)

(5.5)

where the third equality comes from Lemma 5.3.

By similar arguments, one can compute the number of permutations satisfying case 4 as
P

r

i=1

�
r

i

�
i! (r� i+ l+ k)! = r(l+r+k)!

(l+k+1) . Let T be the number of permutations that satisfy

both conditions, summing the four cases up, we have

T = 2(l + k + r)! +
l(l + r + k)!

(r + k + 1)
+

r(l + r + k)!

(l + k + 1)

= (2 +
l

(r + k + 1)
+

r

(l + k + 1)
)(l + k + r)!

(5.6)

Finally, the conditional probability can be calculated as T/S.
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Pr[Y < N(Y ) | X < N(X)] = T/S =
(2 + l

(r+k+1) +
r

(l+k+1))(l + k + r)! (l + k + 1)

(l + k + r + 2)!

=
(2 + l

(r+k+1) +
r

(l+k+1))(l + k + 1)

(l + k + r + 1)(l + k + r + 2)

=
2(r + k + 1)(l + k + 1) + l(l + k + 1) + r(r + k + 1)

(r + k + 1)(l + k + r + 1)(l + k + r + 2)

=
(l + r + k + 1)(l + r + 2k + 2)

(r + k + 1)(l + k + r + 1)(l + k + r + 2)

=
(l + r + 2k + 2)

(r + k + 1)(l + k + r + 2)
(5.7)

By Lemma 5.4, it is not surprising that when k = 0 (i.e., X and Y do not share any

neighbours), Pr[Y < N(Y ) | X < N(X)] = 1
r+1 = Pr[Y < N(Y )], meaning that

X < N(X) and Y < N(Y ) are independent. Moreover, if k > 0, then we always have

(l+r+2k+2)
(r+k+1)(l+k+r+2) >

1
r+k+1 . Thus, we can conclude that X < N(X) and Y < N(Y ) are

positively correlated if and only if X and Y share at least one common neighbour.

It remains to bound the variance of our output b�. Recall that Xv is a binary random

variable indicating whether v 2 S at the end of Algorithm 4, p is the proportion of

vertices that are sampled in the algorithm, and X =
P

v2V (G)Xv. Note that Var(b�) =

Var( |S|
p
) = Var(X). Hence it su�ces to bound the variance of X.

Lemma 5.5. If �  ✏
2
n

3(d+1)3
and p � 4(d+1)

✏2n
, then

Var(X)  ✏
2
E

2[X]

3
(5.8)

Proof. By our analysis for Lemma 5.2, Pr[Xv = 1] = (1±✏)p
d(v)+1 . For simplicity, we ignore

the (1 ± ✏) factor in the following variance analysis, that is, Pr[Xv = 1] = p

d(v)+1 ; the

same analysis still holds without removing (1± ✏). For each binary random variable Xv,

we have

Var(Xv) = E[X2
v ]� E

2[Xv] =
p

d(v) + 1
(1� p

d(v) + 1
) (5.9)
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Assume non-adjacent vertices i and j share k � 0 common neighbours. The covariance

between two variables Xi and Xj is

Cov(Xi, Xj | (i, j) /2 E) = E[XiXj ]� E[Xi]E[Xj ]

= Pr[Xi = 1 ^Xj = 1]� Pr[Xi = 1]Pr[Xj = 1]

= Pr[Xi = 1 | Xj = 1]Pr[Xj = 1]� Pr[Xi = 1]Pr[Xj = 1]

=
p(d(i) + d(j) + 2)

(d(i) + 1)(d(i) + d(j)� l + 2)

p

d(j) + 1
� p

d(i) + 1

p

d(j) + 1

=
p
2
l

(d(i) + d(j)� l + 2)(d(i) + 1)(d(j) + 1)
,

(5.10)

where the second-last equality arises from Equation (5.7) with d(i) = l + k and d(j) =

k+r. It is not hard to see that equation (5.10) is a constraint function subject to d(i) � 1,

d(j) � 1, and k  min{d(i), d(j)}. This function has global maximum at p
2
k

(k+1)2(k+2)

when k = d(i) = d(j) for di↵erent values of d(i) and d(j), which is maximized at p
2

12

when k = 1.

And if vertex i and j are adjacent (i.e., (i, j) 2 E(G)), Xi and Xj are strongly negatively

correlated, as Xi = 1 implies Xj = 0. Hence,

Cov(Xi, Xj | (i, j) 2 E) = E[XiXj ]� E[Xi]E[Xj ] = 0� p

d(i) + 1

p

d(j) + 1

= � p
2

(d(i) + 1)(d(j) + 1)

(5.11)

Moreover, let P be the number of vertex pairs that share at least one common neigh-

bour. Assume the vertices are labeled from 1 to n, by variance equation for the sum of

correlated variables, we have (for simplicity, we sometimes abbreviate 1  i < j  n as

i < j),
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Var(X) =
nX

i=1

Var(Xi) + 2
X

1i<jn

Cov(Xi, Xj)

=
nX

i=1

p

d(i) + 1
(1� p

d(i) + 1
) + 2

X

1i<jn

Cov(Xi, Xj)


nX

i=1

p

d(i) + 1
+ 2

X

i<j^(i,j)/2E

p
2
k

(k + 1)2(k + 2)
� 2

X

i<j^(i,j)2E

p
2

(d(i) + 1)(d(j) + 1)

 p�+ 2p2
P

12
(5.12)

Note that for each vertex v with degree dv, it introduces at most dv(dv�1)
2  d

2
v
2 new pairs

of vertices that share a common neighbour (i.e. v). Thus, P  1
2

P
v2V (G) d

2
v. Since we

assume that �  ✏
2
n

3(d+1)3
, we have

X

v2V (G)

d
2
v  �2dn

�
+ (n� dn

�
) < (�d+ 1)n  (

✏
2
nd

3(d+ 1)3
+ 1)n <

✏
2
n
2

3(d+ 1)2
+ n

 ✏
2
n
2

2(d+ 1)2
,

(5.13)

where the last inequality holds when n �
p
6(d+1)
✏

. And the first inequality is because

given the maximum degree � and a su�ciently large n, the term
P

v2V (G) d
2
v is maxi-

mized when the degree distribution is highly biased. That is, when there are around dn

�

vertices hitting the maximum degree �, while the rest of vertices are having degree 1

(as the graph is assumed to be connected).

Finally, combining Equation (5.12) and (5.13), we have

Var(X)  p�+ 2p2
P

12

 p�+ p
2 ✏

2
n
2

24(d+ 1)2

 p�+ p
2 ✏

2
�
2

24

= E[X] +
✏
2
E

2[X]

24

 ✏
2
E

2[X]

3

(5.14)



Chapter 5 Streaming Independent Set 69

where the third inequality holds because the value of Turán Bound is at most the value of

Caro-Wei Bound, i.e., n

d+1


P
v2V (G)

1
d(v)+1 = � (see [17] for a proof). The inequality in

the second-last line arises from E[X] = p�. And the last inequality holds if E[X] � 24
7✏2 ,

since we have assumed that p � 4(d+1)
✏2n

and � � n

d+1
, E[X] = p� � 4

✏2
, thus the inequality

follows.

Finally, it is time to prove our main theorem, Theorem 5.1.

Proof of Theorem 5.1. As proved in Lemma 5.2 and Lemma 5.5, the expectation

of the returned result b� is (1 ± ✏)�, and Var(X)  ✏
2
E

2[X]
3 . Hence, by Chebyshev’s

inequality, we have

Pr
⇥
|b�� �| � 3✏�

⇤
 Pr

⇥
|b�� E[b�]| � ✏E[b�]

⇤

= Pr
⇥
|X � E[X]| � ✏E[X]

⇤

 Var(X)

✏2E2[X]

 1

3
,

(5.15)

where the first inequality holds because ✏ < 1 so that (1 + ✏)2 < (1 + 3✏) and (1� ✏)2 >

(1� 3✏). Therefore, the algorithm succeeds with probability at least 2/3.

The algorithm only keeps a ✏-min-wise hash function and O(d✏�2) vertices. The hash

function takes O(log ✏�1 log n) bits to store, and each vertex v takes O(log n) bits to

store. Therefore, the total space usage is O((d✏�2 + log ✏�1) log n) = O(d✏�2 log n).

Moreover, the success probability of Algorithm 4 can be boosted to 1 � � by running

2 log ��1 independent instances concurrently, and return the median of their results.

Since every instance is independent of each other, the probability that half of instances

fail (i.e., obtain a result that is 3✏ away from �) is at most 3log �
�1

= �. And the space

usage of the boosting algorithm is O(d✏�2 log ��1 log n).
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5.1.2 Modifications to Online Streaming Model

Algorithm 4 can be modified to output an actual independent set in the online streaming

model. As required by the online streaming model, our algorithm must maintain a valid

independent set in every given point of the stream. Initially, the solution contains all

vertices, as no edges have arrived yet, hence the graph is full of isolated vertices. Each

time an edge arrives, the algorithm needs to decide which vertex should be removed from

the solution to maintain the validity of the solution. And the removed vertex cannot be

added back to the solution later (decisions in the online streaming model are irrevocable).

The solution set can be stored as a n-bit array, such that each index is corresponding

with one vertex, and the bit is set to 1 if the solution contains this vertex. We can

store the solution set either locally or in a remote server, and our algorithm “reports”

its decisions on the server. Either way, we are interested in the external memory usage,

that is, the memory used other than to store the solution. Also, for simplicity, we assume

that removing an already-removed vertex is valid, and this operation has no e↵ect on

the solution. We use working space to refer to the space usage of the algorithm (i.e.,

space used other than storing the solution set), and update time to refer to the decision

time of the algorithm when an edge arrives. Recall that Halldórsson et al. [57] gave an

online streaming algorithm with O(log n) update time and O(n) working space usage,

which reports an independent set of size at least the Caro-Wei Bound in expectation.

Our algorithm is shown in Algorithm 5. Similar to Algorithm 4, this algorithm uses a

randomly drawn ✏-min-wise hash function to obtain a random permutation of vertices,

and uses this permutation to indicate whether a vertex should be reserved in the solution.

Upon each edge arrival, we compute the hash value (i.e., the order) of the two vertices,

h(u) and h(v), if h(u) � h(v), then u cannot have the smallest order in N [u], hence it is

safe to remove it from the solution. And since there is a solution set and the algorithm

reports its decision directly to the solution set, there is no need to maintain a sample set

of vertices to help estimate the size of the final solution. The properties of Algorithm 5

is summarized in Theorem 5.6.

Theorem 5.6. Algorithm 5 is an online streaming algorithm that reports an inde-

pendent set of size 1 ± ✏ times the Caro-Wei Bound (�) in graphs with maximum de-

gree �  ✏
2

n

3 (d + 1)3
. It succeeds with probability at least 2/3, it uses working space

O(log ✏�1 log n) and has update time O(log ✏�1).
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Algorithm 5 Reporting Independent Set with Caro-Wei Bound

1: Input: an error term ✏, a solution set containing all vertices initially
2: Initialization: Randomly select a hash function h 2 H
3:

4: for all e = (u, v) do
5: if h(u) � h(v) then
6: Remove u from the solution
7: else
8: Remove v from the solution

Proof. Let a binary random variable Xv denote whether v is not removed by Algo-

rithm 5. Since a vertex v is removed if and only if it does not have the smallest hash

value across N [v], Pr[Xv = 1] = 1±✏

d(v)+1 . Let X be the sum of all Xv’s. By the construc-

tion of the algorithm, X is exactly the size of the final solution. And the expectation of

X is

E[X] =
X

v2V (G)

E[Xv] =
X

v2V (G)

Pr[Xv = 1] = (1± ✏)
X

v2V (G)

1

d(v) + 1
= (1± ✏)� (5.16)

Moreover, following the same proof as Lemma 5.5 (note: since we are not sampling

vertices, the sampling probability p in Lemma 5.5’s analysis can be treated as 1), we

can bound the variance of X as Var(X)  ✏
2
E

2[X]
3 . Applying Chebyshev’s inequality, we

have

Pr
⇥
|b�� �| � 3✏�

⇤
 1

3
, (5.17)

Hence, the algorithm fails with probability at most 1/3.

The algorithm only uses a randomly drawn ✏-min-wise hash function, which can be

stored using O(log ✏�1 log n) bits and has calculation time O(log ✏�1). Hence, the space

usage and the update time of Algorithm 5 is O(log ✏�1 log n) and O(log ✏�1).

The success probability can be boosted to 1�� by running log ��1 independent instances

simultaneously and return the maximum result. By the union bound, the probability
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that all instances fail is at most (13)
log ��1

= �. After boosting, the space usage becomes

O(log ✏�1 log ��1 log n) and the update time becomes O(log ✏�1 log ��1).

5.1.3 Removing the Maximum Degree Constraint

Theorem 5.1 holds only when the maximum degree �  ✏
2
n

3 (d + 1)3
. We can remove

this constraints by finding the heavy hitters (i.e., vertices with very high degree) and

removing them from the graph. To illustrate, firstly note that by the Turán Bound,

the independence number is at least n

d+1
. Also, given a graph, adding a new vertex

to this graph increases its independence number by at most 1, which can be easily

proved via contradiction. Hence, if we remove at most ✏n

d+1
vertices from the graph,

and the independence number of the remaining graph is at most ✏-factor less than the

independence number in the original graph. That is, let G be a graph and G
0 be the

graph after removing at most ✏n

d+1
vertices from G, we have (1�✏)�(G)  �(G0)  �(G).

If all the high-degree vertices are removed, then our results above can be applied to the

remaining graph. The cost of doing this is a slightly worse and biased approximation

ratio, plus slightly more space. And the algorithm cannot be adapted to the online

streaming model as there is a post processing step involved.

To begin with, we formalize our argument about removing high-degree vertices without

influencing the independence number too much in Lemma 5.7. Let Hµ be the set of

vertices with degree at least µ, and G�Hµ be the graph after removing all vertices in

Hµ.

Lemma 5.7. For every µ � d+1
p
✏
, �(G) � �(G�Hµ) � (1� ✏)�(G).

Proof. The first inequality, �(G) � �(G�Hµ), clearly holds as removing vertices does

not increase the independence number.

Given the average degree d, the total degree of all vertices is dn. By the Pigeonhole

Principle, there are at most dn

µ
vertices with degree at least µ. Hence, we have
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�(G�Hµ) > �(G)�
X

v2Hµ

1

d(v) + 1
� �(G)� 1

µ+ 1

dn

µ
> �(G)� dn

µ2

� �(G)� ✏
dn

(d+ 1)2

� �(G)� ✏
n

(d+ 1)

� �(G)� ✏�(G)

(5.18)

where the first inequality is not a equality because vertices adjacent to Hµ have smaller

degree in G�Hµ than in G, hence 1
d(v)+1 is larger in calculating �(G�Hµ). The last

inequality holds because the value of Turán Bound is at most the value of Caro-Wei

Bound, i.e., n

d+1


P
v2V (G)

1
d(v)+1 = � (see [17] for a proof).

Our algorithm is presented in Algorithm 6. In this algorithm, we input a set of ver-

tices, R, which contains the set of vertices to be removed. Also, we sample a set of

vertices beforehand and use them to estimate the Caro-Wei Bound. Similar to Algo-

rithm 4, a vertex is removed from the sample set if they have hash value greater than

some of its neighbours. However, we cannot do that during the stream, as we need to

remove R first. Hence, we will be obtain all the neighbours of the sampled vertices, and

use a post-processing step to remove R and remove sampled vertices that do not have

smallest hash value across its neighbours.

Lemma 5.8. Given the average degree d and an error term 0 < ✏ < 1, condition on

R containing all vertices with degree at least ✏
2

n

3 (d + 1)3
and no vertices with degree less

than d(d+1)
✏

, Algorithm 6 is an insertion-only algorithm that outputs an (1 � ✏)(1 ± ✏)-

approximation of the Caro-Wei Bound (�). It succeeds with probability at least 19/30

and uses space O(d
2
✏
�2 log n).

Proof. By the construction of Algorithm 6, if vertices in R are adjacent to some sampled

vertices, they are removed from the neighbourhood list of sampled vertices (line 13 – 14 in

the algorithm). Hence, by the condition on line 16 – 17, each sampled vertex is retained

in S if and only if it has the smallest hash value in the subgraph after removing R. Let a

binary random variable Xv be the indicator of v being sampled and retained in S. That
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Subroutine 6 Approximating the Caro-Wei Bound - No Degree Constraint

1: Input 1: the average degree d, an error term ✏

2: Input 2: R, a set of removed vertices
3:

4: Initialization: Randomly select a hash function h 2 H. Let p = 4(d+1)
✏2n

. Randomly
sample a set S of vertices of size pn. And for each vertex u in S, initialize an empty
neighbour list Lu

5:

6: for all e = (u, v) do
7: if u 2 S then
8: Add v to Lu.

9: Perform the same operation on v

10: Abort if the total size
P

u2S
(1 + |Lu|) is greater than 10dpn

11:

12: Post-processing:
13: if 9 u s.t. |{v | u 2 Lv}| � 1 ^ u 2 R then
14: Remove u from Lv for all v

15:

16: if 9 u s.t. u 2 S ^ h(u) > h(v) for some v 2 Lu then
17: Remove u from S

18:

19: return b� = |S|/p

is, Xv = 1 if v is sampled initially, and is not removed by line 16 – 17. Since the sampling

procedure and the hash function are independent, Pr[Xv = 1] = (1 ± ✏) p

d0(v)+1 , where

d
0(v) is the degree of v after removing R. Let X be the sum of all such random variables,

P
v2V (G)Xv. Clearly, X = |S| at the end of stream. By the linearity expectation, the

expectation of b� can be calculated as follows.

E[b�] = E[|S|]/p = E[X]/p =
1

p

X

v2V (G)

E[Xv] =
X

v2V (G)

1± ✏

d0(v) + 1
= (1± ✏)�0 , (5.19)

where �0 is the Caro-Wei Bound of the subgraph after removing R.

The variance of b� is the same as the variance ofX, as p is fixed. By Lemma 5.5, condition

on R contains all vertices with degree at least ✏
2
n

3 (d + 1)3
, we have Var(X)  ✏

2
E

2[X]
3 .

Hence,

Pr
⇥
|b�� �

0| � 3✏�0
⇤
 Pr

⇥
|X � E[X]| � ✏E[X]

⇤
 Var(X)

✏2E2[X]
 1

3
(5.20)



Chapter 5 Streaming Independent Set 75

By Lemma 5.7, condition on R contains no vertices with degree smaller than d(d+1)
✏

,

�
0 � (1 � ✏)�. Also, the algorithm aborts if the size of sampled vertices and their

neighbourhood lists are too large. Since the average degree is d, in expectation, dpn

vertices are stored by our algorithm. By Markov’s inequality, the probability that the

actual number of stored vertices is 10 times greater than its expectation, dpn, is at most

1/10.

Applying the union bound, the probability that this algorithm fails or aborts is at most

11/30. Hence, with probability at least 19/30, Algorithms 6 outputs an (1 � ✏)(1 ± ✏)-

approximation of the Caro-Wei Bound. The space usage of this algorithm is space to

store the hash function, plus the space to store sampled vertices and their neighbours.

Because of our constraints on line 10, there are at most O(dpn) = O(d
2
✏
�2) vertices

being stored, where each vertex takes O(log n) bits to store. The hash function takes

O(log ✏�1 log n) bits to store. Hence, the total space usage is O(d
2
✏
�2 log n).

According to Lemma 5.8, the success of Algorithm 6 depends on the quality of provided

list of removed vertices, R. By Theorem 2.11 and running the algorithm for heavy hitters

with ✏ = � = ✏
2

6(d+1)4
and � = n

�c for some constant c, we can obtain the desired removal

lists with high probability. The space usage of this heavy hitter instance is O(✏�1 log2 n).

By running log nc (for some constant c) instances of Algorithm 6 concurrently and return

the maximum result, the failure probability can be reduce to n
�c. Note that there is

only one instance of the heavy hitter algorithm, and its result is applied to all instances

of Algorithm 6. Applying a union bound over the fail rate of heavy hitter and the fail

rate of our concurrent instances, the whole algorithm fails with probability at most n�c.

Hence, we have the following Theorem 5.9.

Theorem 5.9. Given the average degree d and an error term 0 < ✏ < 1, by running

heavy hitters from Theorem 2.11 and O(log ��1) instances of Algorithm 6, we can (1�

✏)(1± ✏)-approximate the Caro-Wei Bound (�) with high probability. The space usage is

O(d
2
✏
�2 log2 n).
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5.1.4 Vertex-Arrival Random-Order Algorithm

In previous sections, we use a family of ✏-min-wise hash functions to generate a nearly

random permutation. However, note that if the stream vertex-arrival and random-

order, then the arrival order of of the vertices is itself a random permutation of vertices.

Moreover, by the definition of vertex-arrival stream, each stream element is a new vertex

and its neighbourhood list, containing its neighbours that have already arrived before.

If we use the arrival order as our random permutation (i.e., vertices which come earlier

have smaller order), we can tell if a vertex has the smallest order in its neighbourhood

by detecting whether its neighbourhood list is empty. If so, then none of its neighbours

have arrived before it, thus they all have a larger order than the current vertex. Hence, it

su�ces to just keep a counter to count the number of vertices with empty neighbourhood

list. Furthermore, we could further reduce the space usage by incrementing the counter

with certain probability. Our results are summarized in Algorithm 7 and Theorem 5.10.

Algorithm 7 Approximating the Caro-Wei Bound

1: Input: average degree d, an error term ✏

2:

3: Initialization: A counter c = 0. Let p = 4(d+1)
✏2n

4:

5: for all v,N(v) in the stream do
6: if N(v) is empty then
7: increase the counter c by one with probability p

8: Abort the algorithm if c > 10np

9:

10: return b� = c/p

Theorem 5.10. Given the average degree d and an error term 0 < ✏ < 1, Algorithm 7

is an insertion-only random-order vertex-arrival algorithm that outputs an (1 ± ✏)-

approximation of the Caro-Wei Bound (�) in graphs with maximum degree �  ✏
2

n

3 (d + 1)3
.

It succeeds with probability at least 19/30 and uses space O(log(d✏�2)).

Proof. Firstly, note that b� is an unbiased estimator of �, as each vertex arrives uniformly

at random. Let binary random variable Xv denote whether c is incremented when v

arrives. Xv = 1 if the neighbourhood list of v is empty, and the counter is increased.

These two events are independent, the former event happens with probability 1
d(v)+1 ,

and the latter event happens with probability p. Let X =
P

v2V (G)Xv. By the linearity

of expectation, we have
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E[b�] = E[c]/p = E[X]/p =
1

p

X

v2V (G)

E[Xv] =
X

v2V (G)

1

d(v) + 1
= � (5.21)

By Lemma 5.5, the variance of X, Var(X)  ✏
2
E

2[X]
3 . Applying Chebyshev’s inequality,

we have

Pr
⇥
|b�� �| � ✏�

⇤
= Pr

⇥
|X � E[X]| � ✏E[X]

⇤
 Var(X)

✏2E2[X]
 1

3
, (5.22)

The algorithm might fail if the counter, c, becomes too large so that line 8 is executed.

By Markov’s inequality,

Pr[X � 10np]  E[X]

10np
=

�

10n
 1

10
(5.23)

Therefore, applying the union bound, the algorithm succeeds with probability at least

1� 1/3� 1/10 = 19/30.

The space usage of the algorithm is the size of the counter. By the construction of the

algorithm, the counter is incremented to at most 10np, otherwise line 8 is executed.

Hence, it can be stored in O(log(np)) = O(log(d✏�2)) bits.

Similarly, by running log ��1 independent instances concurrently and return the max-

imum result, the success probability can be boosted to 1 � �. This is because the

probability that all instances fail is at most (1130)
log ��1

= �. The space usage of the new

algorithm after boosting is O(log(d✏�2) log ��1).

5.2 Tree Approximation

5.2.1 3/2 Approximation of Independence Number

Theorem 5.11. [84] For every tree with n � 3, max{n

2 , |Deg1|}  �  n+|Deg1|
2

which can be generalized to trees with n � 2 as:
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Theorem 5.12. For every tree with n � 2, max{n

2 , |Deg1|� 1}  �  n+|Deg1|
2

Moreover, given a forest without isolated vertices, if it has c(F ) tree components, then

we have

Theorem 5.13. For every forest without isolated vertices,

max{n
2
, |Deg1|� c(F )}  �  n+ |Deg1|

2
(5.24)

Therefore, any estimation that is between max{n

2 , |Deg1|�c(F )} and n+|Deg1|
2 gives a 3/2

approximation of the forest independence number.

5.2.2 4/3 Approximation of Independence Number

Before establishing our upper bound and lower bound of �, first we proved the following

lemma.

Lemma 5.14. In any connected graph with n � 3, there exists at least one maximum

independent set containing all leaves and no support vertices.

Proof. This can be proved easily via deleting and adding vertices in any given maximum

independent set. Assume we are given a maximum independent set. If it contains all

leaves , then we are done. If some leaves are not included, then their support vertices

must be in the independent set. This can be seen via contradiction, assume that both

the support vertex and its leaves are not in the independent set, then clearly we could

add all the leaves in the set, which violates the assumption that the set is maximum.

Note that each support vertex must be adjacent to at least one leaf, and if it is in the

independent set, none of its leaves is in the set. Hence, we could remove all support

vertices from the given independent set, and add all their leaves into the set, the size of

the resulting set does not decrease. Given that the original set is already maximum, the

new set is also maximum.

Hence in the following section, we assume that the maximum independent set contains

every leaf and none of the support vertices (unless n = 2).
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Lemma 5.15. For every tree T with n � 2,

� � 1

2
(n+ |Deg1|� |S|) (5.25)

Proof. We prove it by showing that there always exist a valid independent set of size

1
2(n+ |Deg1|� |S|). To begin with, consider the case where n = 2, we can easily verify

that � = 1 and n = |Deg1| = |S| = 2, the inequality holds. Hence, in the following

arguments, we assume that n > 2.

Rearranging the terms, we have 1
2(n � |Deg1| � |S|) + |Deg1|. This term is equivalent

as adding all leaves to the independent set, as well as half of the H2 vertices that are

not support vertices. First of all, by the definition of leaf, all of them are not adjacent

to each other when n > 2, hence it is valid to add them into the independent set. By

doing this, no support vertex can be added into the set as it must be adjacent to at least

one leaf. After removing all leaves and support vertices, the remaining graph is a forest

with n � |Deg1| � |S| nodes. Note that none of the vertices in the forest are adjacent

to the vertices that are already in the independent set, otherwise they become support

vertices. Hence, any independent set of the forest is independent from what we have

previously chosen (i.e., the set of all leaves), and their union is still a valid independent

set of the original graph. Therefore, it su�ces to show that in a forest of size n, there

is a independent set of size at least n

2 . By Theorem 5.12, this holds for any trees with

n � 2.

This lower bound is indeed sharp, as any paths of even length, the independence number

is equal to n

2 and |Deg1| = |S|.

Next we show a similar upper bound in terms of the same quantities.

Lemma 5.16. For every tree T with n � 2,

�  2

3
(n+ |Deg1|� |S|) (5.26)

Proof. We prove this lemma via induction on the number of nodes. We consider all

trees with 2  n  4 as the base cases, which can be easily verified by hand.
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Now we assume that the inequality holds for any tree with number of vertices less than

n. There are two cases to consider.

Case 1: There exist twins. Recall a pair of vertices is called twins if they are both

leaves and share a common parent (support vertex). Let T 0 be the tree after removing

either one of the twins. According to Lemma 5.14, �(T ) = �(T 0) + 1. And since we

removed one of the twin, nT = nT 0+1, |Deg1(T )| = |Deg1(T
0)|+1, and |S(T )| = |S(T 0)|.

Hence, by the induction hypothesis, this inequality holds.

Case 2: There is no twin. In this case, consider the longest path in T as shown

below, denote one of its end point as x, the parent of x as y, the parent of y as w,

and the parent of w as z. By the induction hypothesis, T has more than four nodes

and no twins, hence z is guaranteed to be non-leaf. This can be seen by contradiction.

Assuming z is a leaf and there is more than four nodes, then the path from x to z is the

longest, thus the neighbours of w and y can only be leaves. Since we assume there are

no twins, w and y both have degree two, there is exactly four nodes, a contradiction.

By similar argument, it is not hard to see that y is guaranteed to have degree two.

x y w z �· · ·

Case 2.1: dw > 2. When the degree of w is greater than 2, we remove both x and

y, denote the resulting tree as T
0. Note that this removes a leaf and a support vertex.

Moreover, because w has degree more than 2, the removal of x and y does not make w a

leaf, and w is a support vertex in T
0 if and only if it is a support vertex in T . Therefore,

nT = nT 0 +2, |Deg1(T )| = |Deg1(T
0)|+1, and |S(T )| = |S(T 0)|+1. Moreover, we claim

that �(T ) = �(T 0) + 1. This is because by Lemma 5.14, x is in �(T ) and y is not in

�(T ), thus the existence of x and y has no impact on whether w and the rest of vertices

are in �(T ) or not (i.e., they are in �(T ) if and only if they are also in �(T 0)). By the

induction hypothesis, the inequality holds.

Case 2.2: dw = 2. It remains to show that the inequality holds when dw = 2. Similarly,

we have two cases to consider:

Case 2.2.1: z is not a support vertex. In this case, we remove x and y. Similar to

case 2.1, we have nT = nT 0 + 2 and �(T ) = �(T 0) + 1. However, since dw = 2 and z is

not a support vertex in T , the removal of x and y makes w a leaf and z a support vertex.
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Hence |Deg1(T )| = |Deg1(T
0)|, and |S(T )| = |S(T 0)|. By the induction hypothesis, the

inequality holds.

Case 2.2.2: z is a support vertex. On the other hand, if z is already a support vertex

in T , then consider T 0 as the tree after removing x, y, and w from T . Since z is a support

vertex, then according to Lemma 5.14, z must not be in �(T ), thus w must be in �(T ).

Therefore, nT = nT 0 +3 and �(T ) = �(T 0) + 2. Moreover, removing these three vertices

does not make z a leaf or make it not a support vertex in T
0, unless z itself has degree 2.

In the former case, we have |Deg1(T )| = |Deg1(T
0)|+ 1, and |S(T )| = |S(T 0)|+ 1. And

by the induction hypothesis, the inequality holds. In the latter case, we have a path of

length 5 (P5), since x is a leaf, y, w, and z have degree 2, and z is also a support vertex.

It can be easily verified by hand that the inequality holds for P5, which also could be

viewed as a special base case.

This upper bound is asymptotically tight. Consider the following graph, which is a star

of degree r and replace each leaf with a path of length 3. Clearly this graph is a tree

with 3r + 1 vertices, and |S| = |Deg1| = r. The independence number of this graph is

2r as all the r leaves and their r grandparents form the maximum independent set.

Combining Lemma 5.15 and Lemma 5.16, the quantities n, |Deg1|, |S| together give a

4/3 approximation of the independence number in trees.

Theorem 5.17. For every tree T with n � 2,

1

2
(n+ |Deg1|� |S|)  �  2

3
(n+ |Deg1|� |S|) (5.27)

Moreover, these two lemmas can be generalized to forests without isolated vertices, as

the independence number of such forest is equal to the sum of the independence number

of each its components.

Theorem 5.18. For every forest F without isolated vertices,

1

2
(n+ |Deg1|� |S|)  �  2

3
(n+ |Deg1|� |S|) (5.28)



Chapter 5 Streaming Independent Set 82

In addition, we know that by definition, n = |H2| + |Deg1| and |S|  |Deg1|. Hence, if

we assume |S|  |H2|

2 , we have the following inequality,

|S| = |S|
2

+
|S|
2

 |H2|
4

+
|Deg1|

2
=

|H2|+ 2|Deg1|
4

=
n+ |Deg1|

4
(5.29)

Utilizing Equation (5.29) and combining Theorem 5.12 and Theorem 5.18, the following

inequality holds if |S|  |H2|

2 ,

3

8
(n+ |Deg1|) 

n+ |Deg1|� |S|
2

 �  n+ |Deg1|
2

 2

3
(n+ |Deg1|� |S|) (5.30)

Note that the upper bound of Theorem 5.12 also holds for forests without isolated

vertices. Therefore, we have the following corollary that is also a 4/3 approximation of

� when |S|  |H2|

2 .

Corollary 5.19. In every forest F without isolated vertices, if |S|  |H2|

2 , then

3

8
(n+ |Deg1|)  �  n+ |Deg1|

2
(5.31)

5.3 Tree Streaming Algorithms

The algorithms for estimating |S| have been presented and proved in Section 4.2. Hence,

here we only demonstrate our approach for estimating |Deg1| and the number of tree

components.

5.3.1 Estimating the Number of Leaves

Note that |Deg1| (i.e., the number of leaves) cannot be estimated by simply subtracting

the approximation of |H2| from n, as |Deg1| could be in o(|H2|). Also the vector repre-

sentation and L0 norm does not quite work here. Therefore, we start by considering the

following lemma.
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Lemma 5.20. In a tree T with n � 2 and maximum degree �,

|Deg1(T )| = �+
�X

i=3

(|Hi|� 1) = 2 +
�X

i=3

|Hi| (5.32)

Proof. We prove the lemma by induction. Without loss of generality, we assume that

the graph is always tree and the number of vertices n is at least 2.

To begin with, let us consider the base case where n = 2: it is essentially a pair of

vertices with one edge between them. By definition, |Deg1| = 2, all vertices have degree

smaller than 2, the equality holds.

Assume the equation holds for the tree with n, and we are adding a new node, un+1, to

it. The newly added node must be leaf, otherwise it creates a cycle in the tree. There

are two cases to consider.

Firstly, when the new leaf is added to an existing leaf node ul, the equation holds. This

is because by adding a node to ul, ul has degree 2 and is not a leaf anymore. As un+1

is a newly introduced leaf, |Deg1| stays the same. Meanwhile, for 3 � i � �, |Hi| stays

the same.

Another case is that the new leaf is introduced at a non-leaf node uo. In this case, |Deg1|

increments by one, since no leaf is removed. Assume previously uo has degree d, after

adding a new leaf, d0 = d + 1, thus making |Hd0 | increase by one. Note that |Hi| stays

the same for all i � 2, i 6= d
0. Therefore, both sides of the equation increase by one, and

the equality holds.

Lemma 5.20 can be generalized to a forest without isolated vertices as follows.

Corollary 5.21. If forest F without isolated vertices has maximum degree of � and

c(F ) tree components, then

|Deg1(F )| = 2c(F ) +
�X

i=3

|Hi| (5.33)

.
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Proof. This equality holds for each individual tree component, and the combination of

them does not change the degree of any vertices. Hence

|Deg1(F )| =
X

T2F

|Deg1(T )| =
X

T2F

2 +
�X

i=3

|Hi(T )| = 2c(F ) +
�X

i=3

|Hi(F )| (5.34)

By Corollary 5.21, we have

|Deg1| = 2c(F ) +
�X

i=3

|Hi| = 2c(F ) +
�X

i=3

((i� 2)|Deg i|) (5.35)

Recall that if we map the degree of each vertex onto a vector v of length n (i.e., v = {0}n),

where a coordinate value |vi| represents a vertex’s degree, then the L1 norm of this degree

vector is

L1 = kvk =
nX

i=1

|vi| =
�X

i=1

i |Deg i| (5.36)

Thus, if we subtract every coordinate on the degree vector by 2 (which is essentially the

same as initializing the vector as {�2}n rather than {0}n), we have

L1 = kvk =
nX

i=1

|vi � 2| = |Deg1|+
�X

i=3

(i� 2) |Deg i| (5.37)

Combining Equation (5.35) and (5.37), |Deg1| can be expressed as

|Deg1| =
L1

2
+ c(F ) (5.38)

Hence, in order to estimate |Deg1|, we can estimate the number of tree components and

the L1 norm of the degree vector “starting with {�2}n”. Similarly, since the L1 sketches

do not support the operation “start with {�2}n”, we can postpone the degree decrements

to a post-processing step. The number of tree components can be obtained exactly by

keeping a counter m counting the number edges, and returning c(F ) = n �m. By the
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property of a forest, it is an exact estimate of c(F ). Also, by Theorem 2.5, |L1| can be

(1±✏)-approximated using O(✏�2 log(mM)) bits of space. The success probability of the

L1 approximation algorithm can be increased to 1�� by running O(log ��1) independent

instances simultaneously and returning the median of them, which introduces an extra

factor of O(log ��1) in both space and time.

Lemma 5.22. Given a forest stream and ✏, � 2 (0, 1), there is a randomized turnstile

streaming algorithm that uses O(polylog(n)) space and, with probability 1� �, outputs a

1± ✏ approximation of |Deg1|.

Combining Theorem 5.13 and Lemma 5.22, we have

Theorem 5.23. There is a randomized turnstile streaming algorithm that uses O(polylog(n))

space and with probability 1��, outputs a 3/2 approximation of the optimal independent

set size of a forest.

5.3.2 Estimating Independence Number

The main algorithm for approximating the forest independence number is similar to

the main algorithm for forest domination number approximation (Algorithm 3). We

run several subroutines concurrently and return the minimum between 3(n+|Deg1|)
8 and

n+|Deg1|�|S|

2 as our estimate.

Algorithm 8 Main Algorithm for Estimating �

1: Input: error rate ✏ and fail rate �
2:

3: Initialization: Set K1 =
p
n, K2 = 8

p
n, c1 = 3 ln(6��1), c2 = �

�1, ✏1 = ✏/2
4:

5: Run the following algorithms concurrently:
6: 1. Algorithm for estimating |Deg1| with ✏/2 and �/2, denote the returned result as

|[Deg1|
7: 2. Subroutine 1 with K1, c1, and ✏1, denote the returned result as |bS|
8: 3. Subroutine 2 with K2 and c2, denote the returned result as |bS|0 and |cH2|0
9:

10: if Subroutine 2 returns FAIL then

11: Return b� = min{3(n+|[Deg1|)
8 ,

n+|[Deg1|�|bS|
2 }

12: else
13: Let |[Deg1|0 = n� |cH2|0

14: Return b� = min{3(n+|[Deg1|
0)

8 ,
n+|[Deg1|

0
�|bS|0

2 }
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Theorem 5.24. Given error rate and fail rate ✏, � 2 (0, 1), as well as a turnstile forest

stream, Algorithm 3 uses two passes and outputs a 4/3(1 ± ✏) approximation of the

independence number with probability 1� �. The space usage of the algorithm is eO(
p
n).

Proof. As proved in Theorem 5.18 and Corollary 6.7, the minimum between our two

estimates, 3(n+|Deg1|)
8 and n+|Deg1|�|S|

2 , is guaranteed to be a good 4/3 approximation of

the independence number �. Hence, it su�ces to show that we could either approximate

both terms well, or approximate the larger term well.

When |H2|  K2 = 8
p
n, the algorithm returns at line 14. By Lemma 4.13, Subroutine 2

gives exact estimates of |H2| and |S| with probability 1 � 1/c2 = 1 � �. Also, since

n = |H2| + |Deg1| and n is known, we can obtain an exact estimate of |Deg1|. Hence,

no matter which estimate is returned, it is a 4/3 approximation of the independence

number.

When |H2| > 8
p
n, we have two cases to consider. If |S| �

p
n, our algorithm may return

the estimate of 3(n+|Deg1|)
8 or the estimate of n+|Deg1|�|S|

2 (line 11). On the one hand, If

the estimate of 3(n+|Deg1|)
8 is returned, by Lemma 5.22 we know that the algorithm on

line 6 outputs a (1± ✏

2) estimate of |Deg1| with probability 1� �/2. Thus our result is

a 4/3(1± ✏/2) approximation of �.

On the other hand, if the estimate of n+|Deg1|�|S|

2 is returned, by Lemma 4.12, Subrou-

tine 1 gives a (1± ✏

2) estimate of |S| with probability

1� 3e�c1/3 = 1� 3e� ln(6��1) = 1� �

2
. (5.39)

Applying a union bound over the algorithm for estimating |S| and the algorithm for

estimating |Deg1|, the probability of failure is at most �. And on the upper-bound side,

the approximation ratio is at most

1

2
(n+ (1± ✏

2
)|Deg1|� (1± ✏

2
)|S|)  1

2
(n+ |Deg1|� |S|+ ✏

2
(|Deg1|+ |S|))

 (1 + ✏)
1

2
(n+ |Deg1|� |S|)

(5.40)
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where the last inequality holds because |S|  |Deg1|  n, thus |Deg1| + |S| is no more

than 2(n+ |Deg1|� |S|). Similarly, we prove the approximation ratio on the lower bound

as

1

2
(n+ (1± ✏

2
)|Deg1|� (1± ✏

2
)|S|) � (1� ✏)

1

2
(n+ |Deg1|� |S|) (5.41)

Hence, our algorithm returns a 4/3(1± ✏) approximation of the independence number.

Lastly, if |S| <
p
n, then by Lemma 4.12, |bS|  2

p
n with probability 1�2e�

c1
3✏2 . Also by

Theorem 4.9, we know that |cH2| � (1� ✏)|H2| > |H2|/2 holds with probability 1� �/2

(if ✏ < 1/2). Since |H2| � 8
p
n, by applying a union bound, we can claim that the

probability of 2|bS| > |cH2| is at most 2e�
c1
3✏2 +�/2  �. Therefore, with probability 1��,

the minimum between the two estimates is 3(n+|[Deg1|)
8 . As shown before, |[Deg1| is a 1± ✏

estimate of |Deg1|, hence the return estimate is a 4/3(1 ± ✏) approximation of � with

probability 1� �.

The space usage of Algorithm 8 is the maximum space usage of its three sub-algorithms,

which is eO(
p
n).

5.4 Hardness Results

Cormode et al. [40] have proved a lower bound for approximating the Caro-Wei Bound.

They showed that every randomized algorithm with constant error probability requires

⌦( n

�Lc
2p
) space to c-approximate the Caro-Wei Bound, where �L is a known lower bound

of the Caro-Wei Bound and p is the number of passes allowed. By using the Turán Bound

as the lower bound, we have

Theorem 5.25. [40] Every one-pass streaming algorithm that approximate the indepen-

dence number with the d(1± ✏) approximation ratio would require ⌦( d

✏2
) space.

But we also remark that the above lower bound only applies to graphs with average

degree at least 16n�28
49 . Recall that in Cormode et al. [40], they prove the lower bound

via reduction from the set disjointedness problem on the universe of [k], such that
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they construct a graph based on the sets from Alice and Bob, and an algorithm that c-

approximates the Caro-Wei Bound on the constructed graph solves the set disjointedness

problem. In their construction, k + 3 groups of vertices are created, and they denote

them as A, B, C, Ui, . . . , Uk. Moreover, for an arbitrary integer z, they let q = 2zc2

and a = kq. And they have |A| = |B| = a, |C| = z, and |Ui| = q for all i 2 [k], thus

n = 3a+ z = z(6kc2 +1). The construction can be summarized as follows. Firstly, they

add edges between every pairs of vertices from A[B to make A[B a large clique. And

then they add edges between every pairs of u 2 Ui and v 2 A if Alice’s set contains i.

Similarly, when the algorithm state is passed to Bob, edges are added between every

pairs of u 2 Ui and v 2 B if Bob has i. Since A[B is a clique in all situations, we have

d � 2a(2a� 1)

n
=

2(n� z)(2(n� z)� 3)

9n
�

12n
7 (12n7 � 3)

9n
=

16n� 28

49
, (5.42)

where the last inequality holds because z  n

7 when both c and k are at least 1.

For forest without isolated vertices, Esfandiari et al. [49] established a lower bound for the

maximum matching problem by reduction from the Boolean Hidden Matching problem.

Their reduction technique also indicates that no randomized streaming algorithm can

approximate the independence number within a factor better than 4/3 in only o(
p
n)

space.

Theorem 5.26. For any forests without isolated vertices, any randomized algorithms

that approximate the independence number to a factor better than 4/3 require ⌦(
p
n)

space.



Chapter 6

Other Streaming Graph Problems

Support vertices can be useful in understanding and approximating other graph prob-

lems. In this section, we show another application of the it in matching and vertex

cover. A set of edges is a matching if none of them share a common vertex, and a set

of vertices is a vertex cover if for each edge, at least one of its endpoint is in the set.

Both problems have wide applications and have been extensively studied in the data

streams model [25, 26, 32, 33, 39, 49]. It is known that by the König-Egeváry theorem,

in trees and forests, the size of the maximum matching (i.e., matching number) is equal

to the size of the minimum vertex cover (i.e., covering number). Hence, it su�ces to

just demonstrate our result on matching number.

For the matching number in tree (or forest) streams, previous results showed various

2-approximation algorithms [25, 39, 49]. We show that, with additional knowledge on

the number of support vertices, the approximation ratio can be improved to 3/2. To

begin with, we prove that |H2|+|S|

2 is a 3/2-approximation of the matching number. And

then we show how our streaming algorithms for the domination number can be migrated

here to help approximate the matching number.

89
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6.1 Trees Approximation

6.1.1 2 Approximation of Matching and Vertex Cover

Previous studies [25, 39, 49] have shown that the matching number can be 1 ± ✏ ap-

proximated in tree or forest streams using various graph quantities. For example, in an

edge-arrival stream, we say an edge, e, is an E1 edge if for every edge arrives after e,

it does not share a common vertex with e. Cormode et al. have used |E1| as their 2

approximation estimate for trees. Other works [25] [49] have used the number of the

non-leaf vertices and the number of tree components to estimate the matching number

in forests. Let � be the matching number, the size of the maximum matching, c(F ) be

the number of tree components in a forest, and H2 be the set of non-leaf vertices. They

showed that

Theorem 6.1. [25] [49] In forests without isolated vertices, we have

max{c(F ),
|H2|+ c(F )

2
}  �  |H2|+ c(F ) (6.1)

6.1.2 3/2 Approximation of Matching and Vertex Cover

We show that by incorporating the support vertices into the estimate, we can further

improve the approximation ratio to 3/2. Before establishing our upper bound and lower

bound on �, first we prove the following lemma.

Lemma 6.2. In any connected graph with n � 3, there exists a maximum matching

such that every support vertex is matched, and its matching edge is between it and one

of its leaf.

Proof. The first half of the lemma (every support vertex is matched) can be proved

via contradiction. Assume we have a maximum matching and a support vertex s is

not matched, then we could include an edge between s and one of its leaves into the

matching, a contradiction.

The later half can be proved via deleting and adding edges in any existing maximum

matching. Assume we are given a maximum matching M . If M satisfies the condition,
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then we are done. If there is a support vertex s such that it is matched through an edge

between it and a non-leaf vertex, then none of its leaves are matched. This is because

the only way to make a leaf matched is by adding its incident edge into the matching.

And by the definition of matching, edges in the matching cannot share a common vertex.

Hence, we can remove the matching edge of s and include one of the edges between s

and its leaves into the matching. This is valid as the leaf is not matched before, and

s is matched only by the newly added edge. The size of maximum matching does not

decrease.

We may now prove an upper bound on �,

Lemma 6.3. For every tree T with n � 2,

�  |H2|+ |S|
2

(6.2)

Proof. We show that the size of the maximum matching is at most |H2|+|S|

2 . When

n = 2, we have � = 1 and |H2| = |S| = 2, the inequality holds. Hence, in the following

arguments, we assume that n > 2.

Rearranging the terms, we have |S| + |H2|�|S|

2 . By Lemma 6.2, all support vertices are

matched by the edges between them and one of their leaves. Hence, removing all support

vertices and their leaves removes |S| edges in the matching. The remaining graph is a

forest F with n(F ) = |H2|� |S|, and all edges in F can be added into the matching as

they do not share a common endpoint with edges between support vertices and leaves

(i.e., the matching edges that are removed). Hence it remains to prove that for every

forest, there is a matching of size at most n(F )
2 . Since every forest is bipartite, and in a

bipartite graph with total order of n, the matching number is at most n

2 . This is because

one side has at most n

2 nodes. By the Pigeonhole Principle, if there is a matching of

size greater than n

2 , at least one node has more than one matching edges incident on it,

a contradiction.
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Figure 6.1: Sharp example of our upper bound on tree matching number

This upper bound is sharp. For example, Figure ?? has the matching number equals

exactly to |H2|+|S|

2 . It is constructed by taking a star graph H with center, u, and r

leaves, v1, . . . , vr, then for each vertex in H, attaching a new leaf wi on it. Denote the

constructed graph as G. Clearly, G has |H2| = |S| = r+1, as all vertices in H become a

support vertex and have more than 1 neighbour. And it is not hard to see that � = r+1,

as the maximum matching is the edge set E(G) \ E(H).

As for the lower bound, we have

Lemma 6.4. For every tree T with n � 2,

� � |H2|+ |S|
3

(6.3)

Proof. We prove Lemma 6.4 via induction on the number of nodes n. We consider all

trees with 2  n  4 as the base cases, which can be easily verified by hand.

Now we assume that the inequality holds for every tree fewer than n vertices. There are

two cases to consider.

Case 1: There exists a twin. Recall a pair of vertices is twin if and only if they

are both leaves and they share a common support vertex, s. Remove either one of the

twin and let T
0 be the tree after the removal. Note that after doing this, s becomes

a leaf if and only if s has degree two, in this case n = 3, which falls into our base

case. Hence, both |H2| and |S| stays the same after the removal. Moreover, we claim

that the matching number also stays the same. This is because only one of s’s edges

can be included into matching, if the removed leaf is on this edge, then we could add

another edge between s and any one of its remaining leaves. Therefore, by the induction

hypothesis, this inequality holds.
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Case 2: There are no twins. In this case, consider the longest path in T as shown

below, denote one of its endpoint as x, the parent of x as y, the parent of y as w, and the

parent of w as z. By the induction hypothesis, T has more than 4 nodes and no twins,

hence z is guaranteed to be a non-leaf. This can be seen by contradiction. Assuming z

is leaf and there are more than 4 nodes, since the path from x to z is the longest, then

the neighbours of w and y can only be leaves. This is because if w has another path

of length 2, the path from x to z is not the longest path in T , violating our choice at

the beginning. Also, since we assume there is no twins, w and y are both have degree

2, thus there is exactly 4 nodes, a contradiction. By similar argument, it is not hard to

see that y is guaranteed to have degree 2.

x y w z �· · ·

Case 2.1: dw > 2. When w has degree greater than 2, we remove both x and y, denote

the resulting tree as T 0. Since w has degree greater than 2, removing x and y does not

make it a leaf, thus |H2(T )| = |H2(T 0)| + 1. Also, w is a support vertex if and only

if it is a support vertex in T , we have |S(T )| = |S(T 0)| + 1. By Lemma 6.2, we know

that e(x, y) is in the maximum matching of T , but not e(y, w). Hence, the removal of x

and y does not change the matching status of vertices in T
0, �(T ) = �(T 0) + 1. By the

induction hypothesis, the inequality holds.

Case 2.2: dw = 2. It remains to show that the inequality holds when dw = 2. Similarly,

we have two cases to consider:

Case 2.2.1: z is not a support vertex. In this case, we remove x and y. Similar

to case 2.1, we have �(T ) = �(T 0) + 1. However, since dw = 2 and z is not a support

vertex in T , the removal of x and y makes w a leaf and z a support vertex. Hence

|H2(T )| = |H2(T 0)|+2, and |S(T )| = |S(T 0)|. By the induction hypothesis, the inequality

holds.

Case 2.2.2: z is a support vertex. On the other hand, if z is already a support

vertex in T , then consider T 0 as the tree after removing x, y, and w from T . Since z is a

support vertex, then according to Lemma 6.2, z must be matched and e(x, y) is in the

maximum matching. Hence, we know that e(y, w) and e(w, z) are not in the matching,

and the removal of x, y, and w does not change the matching status of vertices in T
0.
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Figure 6.2: Sharp example of our upper bound on tree matching number

Therefore, �(T ) = �(T 0) + 1. Moreover, removing these three vertices does not make z

a leaf or make it not a support vertex in T
0, unless z itself has degree 2. In the former

case, we have |H2(T )| = |H2(T 0)| + 2, and |S(T )| = |S(T 0)| + 1. And by the induction

hypothesis, the inequality holds. In the later case, we have a path of length 5 (P5),

since x is a leaf, y, w, and z have degree 2, and z is also a support vertex. It can be

easily verified by hand that the inequality holds for P5, which also could be viewed as

a special base case.

The lower bound is asymptotically tight. Consider the graph G shown in Figure 6.2. G

is constructed by starting with a star graph, H, with center u and r leaves, v1 . . . , vr, and

we replace each leaf with a path of length 3. G has 2r+1 non-leaf vertices, including the

center u and two of the vertices on each of the paths (i.e., v1, . . . vr and w1, . . . , wr). Also

|S(G)| = r as only the middle vertices (i.e., w1, . . . , wr) on the paths are support vertices.

Lastly, a maximum matching can be found by adding all edges between support vertices

(i.e., w1, . . . , wr) and leaves (i.e., x1, . . . , xr), and one edge from the edges incident on

center u, thus � = r + 1.

Combining to Lemma 6.3 and Lemma 6.4, we have the following theorem.

Theorem 6.5. For every tree T with n � 2,

|H2|+ |S|
3

 �  |H2|+ |S|
2

(6.4)

Also, Theorem 6.5 can be extended to forests without isolated vertices. This is because

in a forest without isolated vertices, each tree component has at least two vertices. Also,

for a forest F and its tree components, T1, . . . , Tk, we have |H2(F )| =
P

k

i=1|H2(Ti)|,

and |S(F )| =
P

k

i=1|S(Ti)|, as well as �(F ) =
P

k

i=1 �(Ti). That is, introducing an extra
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tree component does not change the |H2|, |S|, and � value of existing tree components.

Hence, if the inequality holds for each of tree component, it also holds for the forest.

Theorem 6.6. For every forest F without isolated vertices,

|H2|+ |S|
3

 �  |H2|+ |S|
2

(6.5)

Moreover, when taking Theorem 6.1 into account, we have the following corollary that

is also a 3/2 approximation of � when |S|  |H2|

2 . This corollary is interesting as it

indicates that when the number of support vertices is relatively small (when compared

to the number of non-leaf vertices), the estimate max{c(F ), |H2|+c(F )
2 } itself is already a

3/2 approximation of �. Thus there is no need to estimate |S| at all.

Corollary 6.7. In every forest F without isolated vertices, if |S|  |H2|

2 , then

max{c(F ),
|H2|+ c(F )

2
}  �  |H2|+ |S|

2
 3(|H2|+ c(F ))

4
(6.6)

6.2 Tree Streaming Algorithms

6.2.1 Estimating the Matching Number and the Covering Number

The algorithms for estimating |H2| and |S| have been presented and proved in Section

4.2. And the number of tree component, c(F ), can be estimated directly by keeping an

edge counter to count the total number of edges, as c(F ) = m� n. Moreover, since the

number of total insertion is bounded by O(n), the space usage of the edge counter is at

most O(log n), and the algorithm success with probability 1.

The main streaming algorithm for estimating � is similar to the streaming algorithms

for domination number � and independence number �. For simplicity, please refer to

Section 4.2 and Section 5.3 for detailed streaming algorithms.

Theorem 6.8. Given error rate and fail rate ✏, � 2 (0, 1), as well as a turnstile forest

stream, there exists a randomized algorithm that uses two passes and outputs a 3/2(1±✏)

approximation of the matching number with probability 1 � �. The space usage of the

algorithm is eO(
p
n).
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It is well-known that by the König-Egeváry theorem, the matching number (�) is equal

to the verter cover number(⌧) in bipartite graphs. Clearly every tree/forest is bipartite.

Theorem 6.9. Given error rate and fail rate ✏, � 2 (0, 1), as well as a turnstile forest

stream, there exist a randomized algorithm that uses two passes and outputs a 3/2(1± ✏)

approximation of the vertex cover number with probability 1� �. The space usage of the

algorithm is eO(
p
n).

6.3 Hardness Results

For forest without isolated vertices, Esfandiari et al. [49] have proved the following lower

bound for approximating the matching number in the streaming model.

Theorem 6.10. For any forests without isolated vertices, any randomized algorithms

that approximate the matching number to a factor better than 3/2 require ⌦(
p
n) space.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this work, we study two classic combinatorial optimization problem, the dominating

set problem and the independent set problem, under the data streams model. In gen-

eral streamed graphs, computing a c-approximation for the minimum dominating set

problem requires ⌦(n
2

c2
) bits [5], while c-approximating the maximum independent set

requires ⌦(n
2

c7
) [41] bits. That is, we need to store almost the entire graph to achieve

a good approximation for either problem. The problem does not become easier if we

are only interested in the size of the optimal solution, i.e., the domination number and

the independence number. However, when the graph is sparse (i.e., has average degree

in o(log n)), a good approximation on the domination number and the independence

number can be obtained using space much less than storing the whole graph.

The independence number is lower-bound by
P

v2V (G)
1

d(v)+1 , which is also known as

the Caro-Wei Bound [29, 118]. Halldórsson et al. [57] introduced the online streaming

model and gave an online streaming algorithm that outputs an independent set of size

at least the Caro-Wei Bound in expectation. Their algorithm uses O(n) working space

and has update time O(log n). Cormode et al. [40] gave a turnstile streaming algorithm

that (1 ± ✏)-approximates the Caro-Wei Bound with probability at least 1 � � using

O(d✏�2 log n log ��1) space. While algorithm by Cormode et al. [40] uses much less

space, it cannot be modified to output an actual independent set. Using a di↵erent

technique, we give an algorithm that combines the advantages of both algorithm. Firstly,

97
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our algorithm can (1 ± ✏)-approximate the Caro-Wei Bound with the same probability

and space usage as [40]. More importantly, it can be modified to report an actual

independent set in the online streaming model with much cheaper working space usage,

O(log ✏�1 log n log ��1), and update time, O(log 1/✏). Also, the error rate of the modified

algorithm is bounded by our analysis: the returned independent set has size within

(1 ± ✏)-factor of the Caro-Wei Bound with probability at least 1 � �. Our algorithm

requires the graphs have maximum degree �  ✏
2
n

3 (d + 1)3
, which is still O(n) if ✏ and d

are constants. However, if we only need to estimate the Caro-Wei Bound (i.e., no need

to output an actual solution), this restriction can be removed with some extra space

(O(d log n) factor) and an extra post-processing time. Lastly, if the stream is vertex-

arrival and random-order, the space usage of our algorithm can be further reduced to

just O(log(d✏�2) log ��1).

For streamed trees or forests, previous studies showed that the domination number

can be 3-approximated using the number of non-leaf vertices, and the independence

number can be 3/2-approximated using the number of leaves [84]. The number of non-

leaf vertices can be (1 ± ✏)-approximated in data streams using poly(log n) space [25].

However, no streaming algorithm has been shown to for estimating the number of leaves.

We demonstrate a streaming algorithm that (1± ✏)-approximates the number of leaves

using poly(log n) space. Also, we show that by considering the number of support vertices

(i.e., vertices adjacent to leaves), the domination number can be 2-approximated and

the independence number can be 4/3-approximated. Using this technique, we design

streaming algorithms that 2(1± ✏)-approximate the domination number and 4/3(1± ✏)-

approximate the independence number using two passes and Õ(
p
n) space. We believe

the idea of support vertices can be adapted to give improved bounds on other streamed

graph problems. For example, we show that the number of support vertices can be

used to improve the approximation ratio for the size of the maximum matching from 2

[25, 39, 49] to 3/2 in the data stream model. Moreover, the number of support vertices

can be easily estimated in other big-data models, such as the distributed model. Hence,

our algorithms can be adapted to give improved bounds in those models.
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7.2 Future Work

Our work leaves several open problems for future research. Firstly, as shown in [40], the

streaming space lower bound for (1± ✏)-approximating the Caro-Wei bound is ⌦(d✏�2).

But the space usage of our algorithm and the algorithm in [40] is O(d✏�2 log n). Can we

remove this log n factor in the space usage or tighten the lower bound?

In this work, we demonstrate three applications of the support vertices, i.e., domination

number, independence number, and matching number. Can this idea be applied to other

graph problems? Our algorithms used 2 passes and Õ(
p
n) space, but the lower bound

results from [49] do not rule out the possibility of having poly(log n)-space algorithms

with the same approximation ratios. Can we reduce to number of passes to one? Can

we reduce the space usage to poly(log n)? If the streaming algorithm uses a pass to

estimate certain quantities, a common trick to reduce the number passes is by running

log n guesses concurrently. But this technique does not immediately apply in our case,

as in the first pass, we must retain the actual neighbours of sampled vertices.

Finally, can we generalize the definition of support vertices to more general graphs?

For example, planar graphs and graphs with bounded arboricity. One possible choice is

letting vertices whose degree is greater or equal than at least one of its neighbours be

support vertices, which recently has been successfully applied on matching number in

graphs with bounded arboricity [75]. Another possible choice is setting a degree thresh-

old, and letting vertices with degree lower than this threshold be low-degree vertices.

Vertices adjacent to these low-degree vertices are support vertices. We believe that bet-

ter bounds can be achieved on a range of graph problems by careful definition of support

vertices.

To conclude, in this work, we design better approximated algorithms for several graph

problems in streamed sparse graphs, especially graphs with bounded average degree

and forests. We mainly focus on the independent set problem and the dominating set

problem under the data stream model, but we believe that our techniques are generic,

such that they can be easily applied to other graphs problems and other computational

models.
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